Green Latency-aware Data Deployment in Data Centers: Balancing Latency, Energy in Networks and Servers

Yuqi Fan, Hongli Ding, Donghui Hu

School of Computer and Information
Hefei University of Technology

August 18, 2014
Model

School of Computer & Information, Hefei University of Technology, China
Motivation

• Two concerns exist in service provisioning by data centers
 – Users require to experience low latency while accessing data from the data centers
 – Reduce the power consumed by network transport and servers in the data centers
Problem

• We tackle the problem of green data deployment in the data centers, taking into account the three factors of latency, energy consumption of the data centers and the network transport.

• The cost of deploying data on a server in a data center integrates the three factors above.
 – each factor has a coefficient in the cost function.
Objective Function

Minimize:
\[
\lambda_1 \sum_{u_i,dc_j,s_m,d_k} \text{rep}(dc_j, s_m, d_k)p(u_i | d_k)l(u_i, dc_j)
+ \lambda_2 \sum_{dc_j,s_m} \text{rep}(dc_j, s_m)e_S(d_{c_j}, s_{m})
+ \lambda_3 \sum_{u_i,dc_j,s_m,d_k} s(d_k)\text{rep}(dc_j, s_m, d_k)p(u_i | d_k)e_I(u_i, dc_j)
\]

Subject to:
\[
\text{rep}(dc_j, s_m) = \sum_{d_k} \text{rep}(dc_j, s_m, d_k)
\]
\[
\sum_{dc_j,s_m} \text{rep}(dc_j, s_m, d_k) = 1
\]
\[
e_S(d_{c_j}, s_{m}) = P_{s_m}^{dc_j} * PUE(d_{c_j})
\]
\[
\sum_{d_k} \text{rep}(dc_j, s_m, d_k)s(d_k) \leq C(s_m, dc_j), \forall s_m, dc_j
\]
• λ_1, λ_2, and λ_3 are the weights of the sub-objectives of the latency, the energy consumption of the data centers and the network transport, respectively.

• $\text{rep}(dc_j, s_m, d_k)$ indicates whether data d_k is deployed in server s_m in data center dc_j.

• $p(u_i | d_k)$ is the probability that a given request is asking for data d_k and it comes from user group u_i.

• $l(u_i, dc_j)$ is the latency between user group u_i and data center dc_j.

• $\text{rep}(dc_j, s_m)$ is the indicator whether server s_m in data center dc_j has been deployed some data.
• $e_{S(d_{c_j}, s_m)}$ is the energy consumption of server s_m in data center d_{c_j}.

• $s(d_k)$ is the size of data d_k.

• $e_I(u_i, d_{c_j})$ is the energy required to transport one bit from data center d_{c_j} to user group u_i through the Internet.

• $\text{PUE}(d_{c_j})$ is the PUE of data center d_{c_j} is the power of server s_m in data center d_{c_j}.

• $C(s_m, d_{c_j})$ is the capacity of server s_m in data center D_{c_j}.
GLDD (Green Latency-aware Data Deployment)

• When processing each data chunk d_k, GLDD searches the servers in all the data centers with the least cost to deploy data d_k.

• Each server in each data center is checked to obtain the cost to accommodate data d_k on the server if the server has enough capacity.

• The cost of deploying data d_k on server s_m in data center dc_j integrates the three factors of the latency, the power consumed by the servers and the network transport.
Algorithm 1 GLDD Algorithm

Input: Data Request Probability Matrix $P(u_i \mid d_k)$
Input: Network Latency Cost Matrix $L(u_i, d_{c_j})$
Input: Network Transport Energy Cost Matrix $E_I(u_i, d_{c_j})$
Input: Servers Power Cost Matrix $E_S(u_i, d_{c_j})$
Input: Data Size Queue $S(d_k)$
Output: $Rep(d_{c_j}, s_m, d_k)$

Sort $S(d_k)$ by non-ascending order of data size.

while Queue of $S(d_k)$ not empty do
 get the head d_k from the Queue $S(d_k)$
 for each data center d_{c_j} do
 for each server s_m in data center d_{c_j} do
 if server s_m has enough capacity to accommodate data d_k then
 Calculate the cost to deploy data d_k on server s_m in data center d_{c_j};
 end if
 end for
 end for
 Obtain the server s_m in the data center d_{c_j} that costs the least and has enough capacity to accommodate the data d_k.
 $C(s_m, d_{c_j})=C(s_m, d_{c_j}) - S(d_k)$
 $rep(d_{c_j}, s_m, d_k)=true$
end while
Return $Rep(d_{c_j}, s_m, d_k)$
We evaluate the performance of the algorithm GLDD by comparing GLDD with the algorithm FORTE proposed in SIGCOMM'12.