A Buffer-Based Approach to Rate Adaptation: Evidence from a Large Video Streaming Service

Te-Yuan (TY) Huang
Stanford / Netflix
Aug 19th, 2014

Joint work with Nick McKeown, Ramesh Johari, Matt Trunnell, and Mark Watson
Video Streaming Services are Popular

8+ billion hours streamed per month globally

Video is 50+% of peak traffic in the US

Streaming experience could be better
Problem #1: Too many rebuffers

Rebuffers means interruption

Definition: A rebuffer is *unnecessary* if:

- Picking a lower video rate would have avoided it

20 – 30% of rebuffers are unnecessary
Problem #2: Video rate is too low

Video rate represents video quality

Video rate is too low

– When network could sustain a higher video rate
Picked the Wrong Video Rate

Problem #1: Unnecessary Rebuffer
 – The chosen video rate is too aggressive
 – A lower rate would have avoided the rebuffer

Problem #2: Low Video Rate
 – The chosen video rate is too conservative
 – The network could have sustained a higher rate
How is the Video Rate Picked?

Get File 1 (1000kb/s)

File 1: 1000 1000

File 2: 500 500 500 500

The Internet

CDN

Simple HTTP Servers

Video at 1000kb/s

Adaptive Bit Rate (ABR)

Rate Selection Logic

Client

Playback Buffer
How is the Video Rate Picked?

Initial video rate

Download & measure

Capacity estimation

Pick a rate

Video rate for the next video chunk
Highly Varying Capacity

Average Throughput over Each Chunk Download (kb/s)

17 Mb/s

~10% session

34 times

500 Kb/s

Hard to estimate future capacity
Capacity Estimation is Unreliable

Confused, Timid, and Unstable: Picking a Video Streaming Rate is Hard TY Huang et al. [ACM IMC’12]

Downton Abbey without the Hiccups: Buffer-Based Rate Adaptation for HTTP Video Streaming TY Huang et al. [ACM FhMN’12]

Improving Fairness, Efficiency, and Stability in HTTP-based Adaptive Video Streaming with FESTIVE J. Jiang et al. [ACM CoNext’12]

An Experimental Evaluation of Rate Adaptation Algorithms in Adaptive Streaming over HTTP? S. Akhshabi et al. [ACM MMSys’11]

An Experimental Investigation of the Akamai Adaptive Video Streaming L.D. Ciccio et al. [USAB’10]
What can we do?
Can we avoid estimating capacity?
Yes, most of the time!

Capacity estimation can be avoided in steady-state
90+% of a typical movie/TV show

Pick a rate as a function of buffer occupancy
Avoid Capacity Estimation in Steady-State

Start-Up
First few minutes
No idea about the network
Simple estimation can be useful

Steady-State
Build up some idea about the network
Information encoded in the buffer occupancy
Capacity estimation can be avoided
Key Takeaway from Our Results

Using capacity estimation in steady-state is harmful
– 10–20% rebuffers is unnecessary
Pick a video rate as a function of buffer occupancy in steady-state
– Buffer occupancy encodes information about capacity
Capacity estimation can be useful in start-up
– Help us reach the steady state quickly
How is the network condition encoded in the occupancy of video playback buffer?
The relationship between

Buffer, Capacity, and Video Rate
The relationship between Buffer, Capacity and Video Rate
The relationship between **Buffer, Capacity** and **Video Rate**
The relationship between **Buffer, Capacity** and **Video Rate**

1 Video Second

- **Video Rate**

CDN

The Internet
The relationship between **Buffer, Capacity** and **Video Rate**
The relationship between Buffer, Capacity and Video Rate
The relationship between **Buffer**, **Capacity** and **Video Rate**

Output: 1 sec/sec
The relationship between **Buffer, Capacity** and **Video Rate**

![Diagram showing the relationship between output, input, and video rate.](image-url)
The relationship between Buffer, Capacity and Video Rate

Video Rate > Capacity
The relationship between Buffer, Capacity and Video Rate

Capacity is not fully utilized!
Keeps going into slow-start!

Video Rate $<$ Capacity
Natural State Variable: Buffer Occupancy

When buffer occupancy is decreasing
 – We can not sustain the current video rate
 – Decrease the video rate

When buffer occupancy is increasing
 – We can stream a higher video rate
 – Increase the video rate

Pick a rate as a function of buffer occupancy
Nice Properties of Buffer-Based Algorithm

Theorem #1: Avoid unnecessary rebuffers
– When buffer approaches empty
– Request R_{min}
– As long as Capacity $> R_{\text{min}}$
– Buffer will grow

Theorem #2: Maximize video rate
– When buffer approaches full
– Request R_{max}
– As long as Capacity $< R_{\text{max}}$
– Buffer will not be filled
– Fully utilize the capacity

Encoding scheme
Available video rates
Chunk size
Pick a Video Rate as a Function of Buffer Occupancy

- **Maximize Video Rate**
- **Avoid Unnecessary Rebuffer**

Diagram:
- Video Rate Selected
- Buffer Occupancy: Low, High, Full
- R_{max} and R_{min}

1. Increasing from R_{min}
2. Eventually reaches R_{max}
Pick a Video Rate as a Function of Buffer Occupancy
The Buffer-Based ABR Algorithm

Start-Up
Buffer is still growing from empty

Steady-State
Pick a rate as a function of buffer occupancy
Pick a rate based on the immediate past throughput
Verification by Netflix Deployment

Deployed in Netflix’s browser-based player
500,000 users for a weekend in September, 2013

To compare the performance

Group 1: Netflix’s then-default “Control” algorithm

Group 2: Lowest possible rebuffer rate “Lower bound”
- Always streams at the lowest video quality
- Empirical lower bound on rebuffer rate

Group 3: Our buffer-based algorithm “BBA”
Performance: Rebuffer Rate

Hours in GMT

Number of Rebuffers per Hour

Peak Hours
Performance: Rebuffer Rate

Peak Hours

Control

Number of Rebuffers per Hour

Hours in GMT

Rebuffer Rate

Control
Performance: Rebuffer Rate

![Graph showing Number of Rebuffers per Hour vs Hours in GMT. The graph highlights peak hours and control with a lower bound.](image)
Performance: Rebuffer Rate

20 - 30% of rebuffers can be eliminated.
Performance: Rebuffer Rate

10 – 20% less rebuffer than Control
Performance: Steady-State Video Rate

Video Rate Difference
Excluding the First 120 seconds
(kb/s)

Peak Hours

Hours in GMT
Performance: Steady-State Video Rate

![Graph showing video rate difference excluding the first 120 seconds during peak hours.](image)

- **Peak Hours**
- **Hours in GMT**
- **Video Rate Difference (kb/s)**

- **Control**
Performance: Steady-State Video Rate

![Graph showing video rate difference excluding the first 120 seconds over hours in GMT. The graph indicates a higher steady-state video rate for the BBA compared to the Control.](image)

Higher steady-state video rate!
Conclusion

• Capacity varies wildly in practice
 – Capacity estimation is unreliable
• Capacity estimation is still helpful in start-up
• Avoid capacity estimation in steady-state
• Pick a rate as a function of buffer occupancy
 – Buffer occupancy is the natural state variable

Focus on the buffer occupancy allows you to:
Avoid unnecessary rebuffers
Maximize video rates