From the Consent of the Routed: Improving the Transparency of the RPKI.

Ethan Heilman
Danny Cooper
Leonid Reyzin
Sharon Goldberg

Boston University
Aug 2014
Overview

Motivation: The RPKI* (2011 to present) secures interdomain routing, … but creates a new danger of misbehaving authorities.

<table>
<thead>
<tr>
<th>Drop RPKI invalid routes?</th>
<th>Route is reachable during …</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>BGP attack</td>
<td>RPKI misbehavior</td>
</tr>
<tr>
<td>Yes</td>
<td>✓</td>
<td>✗</td>
</tr>
<tr>
<td>No</td>
<td>✗</td>
<td>✓</td>
</tr>
</tbody>
</table>

We propose changes to the RPKI to detect misbehavior.

- We have a window of opportunity to influence RPKI design.
- Changes being still being made to RPKI specification.
- Concurrent to our work, IETF is drafting misbehavior defenses

* RPKI = Resource Public Key Infrastructure [RFC 6480]
Outline

1. Background.
 1. Interdomain routing is not secure: BGP Prefix hijacks.
 2. How the RPKI is designed to prevent these attacks.
 3. Misbehaving RPKI authorities and takedowns.

2. Our proposed changes.
The RPKI is designed to prevent prefix hijacks.

Indonesia Hijacks the World

03 APR, 2014 | 3:09 PM | BY EARL ZMIEJEWSKI

Yesterday, Indosat, one of Indonesia’s largest telecommunications providers, leaked large portions of the global routing table multiple times over a two-hour period. This means that, in effect, Indosat claimed that it “owned” many of the world’s networks. Once someone makes such an assertion, typically via an honest mistake in their routing policy, the only question remaining is how much of the world ends up believing them and hence, what will be the scale of the damage they inflict? Events of this nature, while relatively rare, are certainly not unheard of and can have geopolitical implications, such as when China was involved in a similar incident in 2010.
The Indosat prefix hijack incident from 03/04/2014

1600 prefixes were hijacked.

Source: http://portal.bgpmon.net/data/indosat-us.txt
What is the fundamental vulnerability?

Problem: Route origin announcements are not authenticated.

Solution: The RPKI authenticates route origins.
The structure of the RPKI

Deployment Status of the RPKI:
- Today: ROAs cover about 4% of interdomain routes.
- Goal: Cover all routes!
How relying parties sync to the RPKI

Status of the RPKI today:
• Today, few routers discard “RPKI invalid” routes
Misbehaving RPKI authorities.

- Prior to the RPKI, authorities could allocate IPs but not revoke them.
- But RPKI authorities can revoke allocations!
- Creates a risk that the RPKI can be used for unilateral takedowns.
 - Law enforcement? Business disputes? Extortion?
 - The RPKI designed to secure routing, not enable takedowns.
 - [Mueller-Kuerbis’11, Mueller-Schmidt-Kuerbis’13, Amante’12, FCC’13,…]
- States seem to want the ability to takedown IP prefixes…
 - Dutch court ordered RIPE to takedown prefixes (Nov’11)
 - US court issued a writ of attachment on Iran’s IP prefixes (June’14)
 - IP allocation does not reflect jurisdiction.

of RIPE ROAs by country (from our model RPKI)
An RPKI takedown?

RIPE’s Publication point

RC: 79.132.96.0/19
DARS

RIPE (Réseaux IP Européens)

ROA: Dartel LTD AS 51813 79.132.96.0/24

DARS Publication Point

Dec 19 2013

ROA: DARS AS 43782 79.132.96.0/19

AS 51813 (Dartel LTD) 79.132.96.0/24

AS51813

Is this legitimate behavior, a takedown, or a business dispute? We can’t tell!
Proposed changes to the RPKI

• Design Goals:
 – **Transparency**: Relying parties audit the RPKI & alarm on problems.
 – **Consent**: RCs can indicate their consent to be revoked. Alarms are raised for revocations without consent.
 – **Consistency**: Relying parties have the same view of the RPKI.

• Our Threat Model:
 – Similar to the threat model used in certificate transparency
 [*RFC 6962*]
 – Relying parties are honest
 – Everyone else (including RPKI authorities) is untrusted
If an authority wants to revoke IP prefixes from a child RC, it needs consent from that child & its impacted* descendant RCs.

*Descendants aren’t always impacted by changes to the parent; ask me why later!
If an authority wants to revoke IP prefixes from a child RC, it needs consent from that child & its impacted* descendant RCs.

*Descendants aren’t always impacted by changes to the parent; ask me why later!
Alice syncs in the morning & misses violations between syncs!

Why does Alice need to catch alarms between syncs?
1) So relying parties can audit the RPKI
2) So we can have consistency (explained later)
Catching alarms between syncs.

How Alice checks a publication point:
1. Sync to the publication point
2. Use hints file to reconstruct intermediate manifests
3. Verify the hash chain & signature of the latest manifest
4. Alarm if a consent violation is detected.
Catching alarms between syncs.

How Alice checks a publication point:
1. Sync to the publication point
2. Use hints file to reconstruct intermediate manifests
3. Verify the hash chain & signature of the latest manifest
4. Alarm if a consent violation is detected.
Catching alarms between syncs.

How Alice checks a publication point:
1. Sync to the publication point
2. Use hints file to reconstruct intermediate manifests
3. Verify the hash chain & signature of the latest manifest
4. Alarm if a consent violation is detected.
Catching alarms between syncs.

How Alice checks a publication point:
1. Sync to the publication point
2. Use hints file to reconstruct intermediate manifests
3. Verify the hash chain & signature of the latest manifest
4. Alarm if a consent violation is detected.
Catching alarms between syncs.

Alice

How Alice checks a publication point:
1. Sync to the publication point
2. Use hints file to reconstruct intermediate manifests
3. Verify the hash chain & signature of the latest manifest
4. Alarm if a consent violation is detected.

Theorem: Valid Remains Valid.
Once a relying party has seen a valid RC, that RC remains valid until it consents to be deleted/modified.
How many parties need to consent?

- How many ASes need to be involved when an RC is revoked?
 - Production RPKI
 - average 1.5 ASes / leaf RC
 - Model fully-deployed RPKI
 - average 1.6 ASes / leaf RC
 - 99.3% need <10 ASes / leaf RC
 - 0.02% need >100 ASes / leaf RC

Results: production RPKI
How many parties need to consent?

- How many ASes need to be involved when an RC is revoked?
 - Production RPKI
 - average \(1.5\) ASes / leaf RC
 - Model fully-deployed RPKI
 - average \(1.6\) ASes / leaf RC
 - \(99.3\%\) need \(<10\) ASes / leaf RC
 - \(0.02\%\) need \(>100\) ASes / leaf RC

“With great power comes great responsibility”
- Voltaire, Spiderman
Proposed changes to the RPKI

• Design Goals:
 - **Transparency**: Relying parties audit the RPKI through alarms.
 - **Consent**: If an authority wants to revoke IP prefixes from a child RC, it needs consent from the child RC & its impacted descendant RCs.
 - **Consistency**: Relying parties have the same view of the RPKI.
Mirror world attack: RPKI Authority presents one view to a relying parties and a different view to others.
Detecting mirror worlds using manifest hash chains

Theorem: No mirror worlds.
If the consistency check passes, relying parties saw the same valid objects.

Bob sends a hash of his latest manifest & Alice finds it in her hashchain.
The challenge of asynchronous validity changes.

RIPE

DARS

DARS’ new publication point.
Summary.

Motivation: RPKI secures interdomain routing, but creates a new danger of misbehaving authorities.

- **Our proposed changes:**
 - Consent through .dead objects.
 - Consistency through via hints files, hash-chained manifests, & checks between relying parties.

- **Our changes are practical and effective:**
 - We extend existing mechanisms within the RPKI.
 - Consent requires minimal work for ASes (see paper for details).

- **Window of opportunity to influence RPKI design:**
 - Changes being still being made to RPKI specification.
 - Concurrent to our work, IETF is drafting misbehavior defenses [draft-kent-sidr-suspenders-01].
check out the full version at
http://cs-people.bu.edu/heilman/sigRPKI.pdf

1 Measurements of revocations in production RPKI
2 Tools for detecting & visualizing revocations and downgrades
3 Details of our proposed changes to the RPKI

download our detector at
https://github.com/BUSEC/RPKI_Downgrade_Detector

Ask questions on twitter: @Ethan_Heilman #consentRPKI