
Jupiter Rising: A Decade of Clos Topologies and
Centralized Control in Google’s Datacenter Network

Arjun Singh, Joon Ong, Amit Agarwal, Glen Anderson, Ashby Armistead, Roy Bannon,
Seb Boving, Gaurav Desai, Bob Felderman, Paulie Germano, Anand Kanagala, Jeff Provost,
Jason Simmons, Eiichi Tanda, Jim Wanderer, Urs Hölzle, Stephen Stuart, and Amin Vahdat

Google, Inc.
jupiter-sigcomm@google.com

ABSTRACT
We present our approach for overcoming the cost, oper-
ational complexity, and limited scale endemic to dat-
acenter networks a decade ago. Three themes unify
the five generations of datacenter networks detailed in
this paper. First, multi-stage Clos topologies built from
commodity switch silicon can support cost-effective de-
ployment of building-scale networks. Second, much of
the general, but complex, decentralized network rout-
ing and management protocols supporting arbitrary
deployment scenarios were overkill for single-operator,
pre-planned datacenter networks. We built a central-
ized control mechanism based on a global configura-
tion pushed to all datacenter switches. Third, modu-
lar hardware design coupled with simple, robust soft-
ware allowed our design to also support inter-cluster
and wide-area networks. Our datacenter networks run
at dozens of sites across the planet, scaling in capacity
by 100x over ten years to more than 1Pbps of bisection
bandwidth.

CCS Concepts
•Networks → Data center networks;

Keywords
Datacenter Networks; Clos topology; Merchant Silicon;
Centralized control and management

1. INTRODUCTION
Datacenter networks are critical to delivering web ser-

vices, modern storage infrastructure, and are a key en-

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).

SIGCOMM ’15 August 17-21, 2015, London, United Kingdom
© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3542-3/15/08.

DOI: http://dx.doi.org/10.1145/2785956.2787508

abler for cloud computing. Bandwidth demands in the
datacenter are doubling every 12-15 months (Figure 1),
even faster than the wide area Internet. A number of re-
cent trends drive this growth. Dataset sizes are continu-
ing to explode with more photo/video content, logs, and
the proliferation of Internet-connected sensors. As a re-
sult, network-intensive data processing pipelines must
operate over ever-larger datasets. Next, Web services
can deliver higher quality results by accessing more data
on the critical path of individual requests. Finally, con-
stellations of co-resident applications often share sub-
stantial data with one another in the same cluster; con-
sider index generation, web search, and serving ads.

Ten years ago, we found the cost and operational
complexity associated with traditional datacenter net-
work architectures to be prohibitive. Maximum net-
work scale was limited by the cost and capacity of the
highest end switches available at any point in time [24].
These switches were engineering marvels, typically re-
cycled from products targeting wide area deployments.
WAN switches were differentiated with hardware sup-
port/offload for a range of protocols (e.g., IP multi-
cast) or by pushing the envelope of chip memory (e.g.,
Internet-scale routing tables, off chip DRAM for deep
buffers, etc.). Network control and management pro-
tocols targeted autonomous individual switches rather
than pre-configured and largely static datacenter fab-
rics. Most of these features were not useful for datacen-
ters, increased cost, complexity, delayed time to market,
and made network management more difficult.

Datacenter switches were also built as complex chas-
sis targeting the highest levels of availability. In a
WAN Internet deployment, losing a single switch/router
can have substantial impact on applications. Because
WAN links are so expensive, it makes sense to invest in
high availability. However, more plentiful and cheaper
datacenter bandwidth makes it prudent to trade cost
for somewhat reduced intermittent capacity. Finally,
switches operating in a multi-vendor WAN environment
with arbitrary end hosts require support for many pro-
tocols to ensure interoperability. In single-operator dat-

183

http://dx.doi.org/10.1145/2785956.2787508

acenter deployments, the number of required protocols
can be substantially reduced.

Inspired by the community’s ability to scale out com-
puting with parallel arrays of commodity servers, we
sought a similar approach for networking. This paper
describes our experience with building five generations
of custom data center network hardware and software
leveraging commodity hardware components, while ad-
dressing the control and management requirements in-
troduced by our approach. We used the following prin-
ciples in constructing our networks:

Clos topologies: To support graceful fault tol-
erance, increase the scale/bisection of our datacenter
networks, and accommodate lower radix switches, we
adopted Clos topologies [2, 9, 15] for our datacenters.
Clos topologies can scale to nearly arbitrary size by
adding stages to the topology, principally limited by
failure domain considerations and control plane scala-
bility. They also have substantial in-built path diversity
and redundancy, so the failure of any individual ele-
ment can result in relatively small capacity reduction.
However, they introduce substantial challenges as well,
including managing the fiber fanout and more complex
routing across multiple equal-cost paths.

Merchant silicon: Rather than use commercial
switches targeting small-volume, large feature sets, and
high reliability, we targeted general-purpose merchant
switch silicon, commodity priced, off the shelf, switch-
ing components. To keep pace with server bandwidth
demands which scale with cores per server and Moore’s
Law, we emphasized bandwidth density and frequent re-
fresh cycles. Regularly upgrading network fabrics with
the latest generation of commodity switch silicon allows
us to deliver exponential growth in bandwidth capacity
in a cost-effective manner.

Centralized control protocols: Control and man-
agement becomes substantially more complex with Clos
topologies because we dramatically increase the num-
ber of discrete switching elements. Existing routing
and management protocols were not well-suited to such
an environment. To control this complexity, we ob-
served that individual datacenter switches played a pre-
determined forwarding role based on the cluster plan.
We took this observation to one extreme by collecting
and distributing dynamically changing link state infor-
mation from a central, dynamically-elected, point in the
network. Individual switches could then calculate for-
warding tables based on current link state relative to a
statically configured topology.

Overall, our software architecture more closely resem-
bles control in large-scale storage and compute plat-
forms than traditional networking protocols. Network
protocols typically use soft state based on pair-wise
message exchange, emphasizing local autonomy. We
were able to use the distinguishing characteristics and
needs of our datacenter deployments to simplify control
and management protocols, anticipating many of the
tenets of modern Software Defined Networking deploy-

Figure 1: Aggregate server traffic in our datacenter fleet.

Figure 2: A traditional 2Tbps four-post cluster (2004). Top
of Rack (ToR) switches serving 40 1G-connected servers
were connected via 1G links to four 512 1G port Cluster
Routers (CRs) connected with 10G sidelinks.

ments [13]. The datacenter networks described in this
paper represent some of the largest in the world, are in
deployment at dozens of sites across the planet, and sup-
port thousands of internal and external services, includ-
ing external use through Google Cloud Platform. Our
cluster network architecture found substantial reuse for
inter-cluster networking in the same campus and even
WAN deployments [19] at Google.

2. BACKGROUND AND RELATED
WORK

The tremendous growth rate of our infrastructure
served as key motivation for our work in datacenter
networking. Figure 1 shows aggregate server commu-
nication rates since 2008. Traffic has increased 50x in
this time period, roughly doubling every year. A combi-
nation of remote storage access [7, 14], large-scale data
processing [10,18], and interactive web services [4] drive
our bandwidth demands.

In 2004, we deployed traditional cluster networks sim-
ilar to [5]. Figure 2 depicts this “four-post” cluster ar-
chitecture. We employed the highest density Ethernet
switches available, 512 ports of 1GE, to build the spine
of the network (CRs or cluster routers). Each Top of
Rack (ToR) switch connected to all four of the cluster
routers for both scale and fault tolerance.

With up to 40 servers per ToR, this approach sup-
ported 20k servers per cluster. However, high band-

184

Figure 3: Mix of jobs in an example cluster with 12 blocks
of servers (left). Fraction of traffic in each block destined
for remote blocks (right).

width applications had to fit under a single ToR to
avoid the heavily oversubscribed ToR uplinks. Deploy-
ing large clusters was important to our services because
there were many affiliated applications that benefited
from high bandwidth communication. Consider large-
scale data processing to produce and continuously re-
fresh a search index, web search, and serving ads as
affiliated applications. Larger clusters also substan-
tially improve bin-packing efficiency for job scheduling
by reducing stranding from cases where a job cannot
be scheduled in any one cluster despite the aggregate
availability of sufficient resources across multiple small
clusters.

Maximum cluster scale is important for a more sub-
tle reason. Power is distributed hierarchically at the
granularity of the building, multi-Megawatt power gen-
erators, and physical datacenter rows. Each level of hi-
erarchy represents a unit of failure and maintenance.
For availability, cluster scheduling purposely spreads
jobs across multiple rows. Similarly, the required re-
dundancy in storage systems is in part determined by
the fraction of a cluster that may simultaneously fail as
a result of a power event. Hence, larger clusters lead to
lower storage overhead and more efficient job scheduling
while meeting diversity requirements.

Running storage across a cluster requires both rack
and power diversity to avoid correlated failures. Hence,
cluster data should be spread across the cluster’s failure
domains for resilience. However, such spreading natu-
rally eliminates locality and drives the need for uni-
form bandwidth across the cluster. Consequently, stor-
age placement and job scheduling have little locality in
our cluster traffic, as shown in Figure 3. For a rep-
resentative cluster with 12 blocks (groups of racks) of
servers, we show the fraction of traffic destined for re-
mote blocks. If traffic were spread uniformly across the
cluster, we would expect 11/12 of the traffic (92%) to
be destined for other blocks. Figure 3 shows approxi-
mately this distribution for the median block, with only
moderate deviation.

While our traditional cluster network architecture
largely met our scale needs, it fell short in terms of
overall performance and cost. Bandwidth per host was
severely limited to an average of 100Mbps. Packet drops
associated with incast [8] and outcast [21] were severe

Figure 4: A generic 3 tier Clos architecture with edge
switches (ToRs), aggregation blocks and spine blocks. All
generations of Clos fabrics deployed in our datacenters fol-
low variants of this architecture.

pain points. Increasing bandwidth per server would
have substantially increased cost per server and reduced
cluster scale.

We realized that existing commercial solutions could
not meet our scale, management, and cost requirements.
Hence, we decided to build our own custom data center
network hardware and software. We started with the
key insight that we could scale cluster fabrics to near
arbitrary size by leveraging Clos topologies (Figure 4)
and the then-emerging (ca. 2003) merchant switching
silicon industry [12]. Table 1 summarizes a number of
the top-level challenges we faced in constructing and
managing building-scale network fabrics. The following
sections explain these challenges and the rationale for
our approach in detail.

For brevity, we omit detailed discussion of related
work in this paper. However, our topological approach,
reliance on merchant silicon, and load balancing across
multipath are substantially similar to contemporaneous
research [2,15]. In addition to outlining the evolution of
our network, we further describe inter cluster network-
ing, network management issues, and detail our control
protocols. Our centralized control protocols running on
switch embedded processors are also related to subse-
quent substantial efforts in Software Defined Network-
ing (SDN) [13]. Based on our experience in the dat-
acenter, we later applied SDN to our Wide Area Net-
work [19]. For the WAN, more CPU intensive traffic
engineering and BGP routing protocols led us to move
control protocols onto external servers with more plen-
tiful CPU from the embedded CPU controllers we were
able to utilize for our initial datacenter deployments.

Recent work on alternate network topologies such as
HyperX [1], Dcell [17], BCube [16] and Jellyfish [22]
deliver more efficient bandwidth for uniform random
communication patterns. However, to date, we have
found that the benefits of these topologies do not make
up for the cabling, management, and routing challenges
and complexity.

3. NETWORK EVOLUTION

3.1 Firehose 1.0
Table 2 summarizes the multiple generations of our

185

Challenge Our Approach (Section Discussed in)
Introducing the network to production Initially deploy as bag-on-the-side with a fail-safe big-red button (3.2)
High availability from cheaper components Redundancy in fabric, diversity in deployment, robust software, necessary

protocols only, reliable out of band control plane (3.2, 3.3, 5.1)
High fiber count for deployment Cable bundling to optimize and expedite deployment (3.3)
Individual racks can leverage full uplink
capacity to external clusters

Introduce Cluster Border Routers to aggregate external bandwidth shared
by all server racks (4.1)

Incremental deployment Depopulate switches and optics (3.3)
Routing scalability Scalable in-house IGP, centralized topology view and route control (5.2)
Interoperate with external vendor gear Use standard BGP between Cluster Border Routers and vendor gear (5.2.5)
Small on-chip buffers Congestion window bounding on servers, ECN, dynamic buffer sharing of

chip buffers, QoS (6.1)
Routing with massive multipath Granular control over ECMP tables with proprietary IGP (5.1)
Operating at scale Leverage existing server installation, monitoring software; tools build and

operate fabric as a whole; move beyond individual chassis-centric network
view; single cluster-wide configuration (5.3)

Inter cluster networking Portable software, modular hardware in other applications in the network
hierarchy (4.2)

Table 1: High-level summary of challenges we faced and our approach to address them.

Datacenter First Merchant ToR Aggregation Spine Block Fabric Host Bisection
Generation Deployed Silicon Config Block Config Config Speed Speed BW

Four-Post CRs 2004 vendor 48x1G - - 10G 1G 2T
Firehose 1.0 2005 8x10G 2x10G up 2x32x10G (B) 32x10G (NB) 10G 1G 10T

4x10G (ToR) 24x1G down
Firehose 1.1 2006 8x10G 4x10G up 64x10G (B) 32x10G (NB) 10G 1G 10T

48x1G down
Watchtower 2008 16x10G 4x10G up 4x128x10G (NB) 128x10G (NB) 10G nx1G 82T

48x1G down
Saturn 2009 24x10G 24x10G 4x288x10G (NB) 288x10G (NB) 10G nx10G 207T
Jupiter 2012 16x40G 16x40G 8x128x40G (B) 128x40G (NB) 10/40G nx10G/ 1.3P

nx40G

Table 2: Multiple generations of datacenter networks. (B) indicates blocking, (NB) indicates Nonblocking.

cluster network. With our initial approach, Firehose 1.0
(or FH1.0), our nominal goal was to deliver 1Gbps of
nonblocking bisection bandwidth to each of 10K servers.
Figure 5 details the FH1.0 topology. Our starting point
was 8x10G switches for the fabric and 4x10G switches
for ToRs. The fabric switch was deployed with 4x10G
ports facing up and 4x10G facing down in all stages but
the topmost stage, which had all 8x10G ports facing
down. The ToR switch delivered 2x10GE ports to the
fabric and 24x1GE south-facing ports of which 20x1GE
were connected to servers. Each aggregation block
hosted 16 ToRs (320 machines) and exposed 32x10G
ports towards 32 spine blocks. Each spine block had
32x10G towards 32 aggregation blocks resulting in a
fabric that scaled to 10K machines at 1G average band-
width to any machine in the fabric.

A key drawback of the topology was the low radix of
the ToR switch, which caused issues when links failed.
If the left uplink of a source ToR and the right uplink
of a destination ToR failed within a MTTR window,
machines on these ToRs could not communicate with
each other even though they could communicate with
other machines - an intransitive disconnect not handled
well by applications.

Figure 5: Firehose 1.0 topology. Top right shows a sam-
ple 8x10G port fabric board in Firehose 1.0, which formed
Stages 2, 3 or 4 of the topology.

Since we did not have any experience building
switches but we did have experience building servers,
we attempted to integrate the switching fabric into the
servers via a PCI board. See top right inset in Fig-
ure 5. However, the uptime of servers was less than
ideal. Servers crashed and were upgraded more fre-

186

Figure 6: Firehose 1.1 packaging and topology. The top left
picture shows a linecard version of the board from Figure 5.
The top right picture shows a Firehose 1.1 chassis housing
6 such linecards. The bottom figure shows the aggregation
block in Firehose 1.1, which was different from Firehose 1.0.

quently than desired with long reboot times. Network
disruptions from server failure were especially problem-
atic for servers housing ToRs connecting multiple other
servers to the first stage of the topology.

The resulting wiring complexity for server to server
connectivity, electrical reliability issues, availability and
general issues associated with our first foray into switch-
ing doomed the effort to never seeing production traffic.
At the same time, we consider FH1.0 to be a landmark
effort internally. Without it and the associated learning,
the efforts that followed would not have been possible.

3.2 Firehose 1.1: First Production Clos
Our first production deployment of a custom data-

center cluster fabric was called Firehose 1.1 (or FH1.1),
a variation of the FH1.0 architecture. We had learned
from FH1.0 to not use regular servers to house switch
chips. Thus, we built custom enclosures that standard-
ized around the Compact PCI chassis each with 6 inde-
pendent linecards and a dedicated Single-Board Com-
puter (SBC) to control the linecards using PCI. See in-
sets in Figure 6. The fabric chassis did not contain any
backplane to interconnect the switch chips. All ports
connected to external copper cables that were wired on
the datacenter floor. The linecards were a different form
factor of the same boards used in FH1.0 for stages 2-5.
We built a separate out-of-band Control Plane Network
(CPN) to configure and manage the SBCs of the fabric.

The FH1.1 topology was a variant of the one used in
FH1.0. While the spine block was identical to FH1.0,
the edge aggregation block illustrated in Figure 6 had
a few differences. We used two 4x10G+24x1G switch
chips side connected on the board with 2x10G links for
ToRs. The resulting configuration was a ToR switch
with 4x10G uplinks and 48x1G links to servers. ToRs
were developed as separate 1RU switches each with its
own CPU controller. To scale to 20k machines with

Figure 7: Two Firehose racks (left), each with 3 chassis
with bulky CX4 cables from remote racks. The top right
figure shows an aisle of cabled racks.

at most 2:1 oversubscription, we decided to buddy two
ToR switches together. Of the 4x10G uplinks in each
ToR, two were connected to the fabric while two were
connected sideways to the paired ToR. Traffic from ma-
chines under a ToR could use all four uplinks to burst to
the fabric, though bandwidth under contention would
be lower. The stage 2 and 3 switches within an ag-
gregation block were cabled in a single block (vs. 2
disjoint blocks in FH1.0) in a configuration similar to
a Flat Neighborhood Network [11]. With up to 40 ma-
chines under each ToR, the FH1.1 aggregation block
could scale to 640 machines at 2:1 oversubscription. The
changes in the aggregation block allowed Firehose 1.1
to scale to 2x the number of machines while being much
more robust to link failures compared to FH1.0.

The copper interconnect for FH1.1 was a significant
challenge. Figure 7 shows the chassis in production
deployment. Building, testing, and deploying the net-
work was labor intensive and error prone. The 14m
length restrictions of our CX4 cables required careful
placement of each component of the multistage topol-
ogy. The longest distances were typically between our
ToRs and the next stage of the Firehose switching in-
frastructure. To improve deployability, we worked on a
solution to run fiber only for this stage of the network
topology. We collaborated with vendors to develop cus-
tom Electrical/Optical/Electrical (EOE) cables for this
interconnect. The orange cable in the bottom right of
Figure 7 is an EOE cable capable of spanning 100m
compared to the bulkier 14m CX4 cable to its right.

A major concern with FH1.1 in production was de-
ploying an unproven new network technology for our
mission critical applications. To mitigate risk, we de-
ployed Firehose 1.1 in conjunction with our legacy four-
post cluster fabrics as shown in Figure 8. We main-
tained a simple configuration; the ToR would forward
default traffic to the four-post cluster (e.g., for connec-
tivity to external clusters/data centers) while more spe-

187

Figure 8: Firehose 1.1 deployed as a bag-on-the-side Clos
fabric.

Figure 9: A 128x10G port Watchtower chassis (top left).
The internal non-blocking topology over eight linecards
(bottom left). Four chassis housed in two racks cabled with
fiber (right).

cific intra-cluster traffic would use the uplinks to Fire-
hose 1.1. Since our four-post cluster employed 1G links,
we only needed to reserve four 1GE ToR ports. We built
a Big Red Button fail-safe to configure the ToRs to avoid
Firehose uplinks in case of catastrophic failure.

3.3 Watchtower: Global Deployment
Our deployment experience with Firehose 1.1 was

largely positive. We showed that services could en-
joy substantially more bandwidth than with traditional
architectures, all with lower cost per unit bandwidth.
Firehose 1.1 went into production with a handful of clus-
ters and remained operational until recently. The main
drawback to Firehose 1.1 was the deployment challenges
with the external copper cabling.

We used these experiences to design Watchtower, our
third-generation cluster fabric. The key idea was to
leverage the next-generation merchant silicon switch
chips, 16x10G, to build a traditional switch chassis with
a backplane. Figure 9 shows the half rack Watchtower

Figure 10: Reducing deployment complexity by bundling
cables. Stages 1, 2 and 3 in the fabric are labeled S1, S2 and
S3, respectively.

Individual cables 15872
S2-S3 bundles (16-way) 512
Normalized cost of fiber/m in 16-way bundle 55%
S2-ToR bundles (8-way) 960
Normalized cost of fiber/m in 8-way bundle 60%
Total cable bundles 1472
Normalized cost of fiber/m with bundling
(capex + opex)

57%

Table 3: Benefits of cable bundling in Watchtower.

chassis along with its internal topology and cabling.
Watchtower consists of eight line cards, each with three
switch chips. Two chips on each linecard have half their
ports externally facing, for a total of 16x10GE SFP+
ports. All three chips also connect to a backplane for
port to port connectivity. Watchtower deployment, as
seen in Figure 9 was substantially easier than the earlier
Firehose deployments. The larger bandwidth density
of the switching silicon also allowed us to build larger
fabrics with more bandwidth to individual servers, a
necessity as servers were employing an ever-increasing
number of cores.

Fiber bundling further reduced the cabling complex-
ity of Watchtower clusters. Figure 10 shows a Watch-
tower fabric deployment without any cable bundling.
Individual fibers of varying length need to be pulled
from each chassis location, leading to significant deploy-
ment overhead. The bottom figure shows how bundling
can substantially reduce complexity. We deploy two
chassis in each rack and co-locate two racks. We can
then pull cable bundles to the midpoint of the co-located
racks, where each bundle is split to each rack and then
further to each chassis.

Finally, manufacturing fiber in bundles is more cost
effective than individual strands. Cable bundling
helped reduce fiber cost (capex + opex) by nearly 40%
and expedited bringup of Watchtower fabric by multi-
ple weeks. Table 3 summarizes the bundling and cost
savings.

188

Figure 11: Two ways to depopulate the fabric for 50% ca-
pacity.

Figure 10 also depicts how we started connecting our
cluster fabric to the external inter cluster networking.
We defer detailed discussion to Section 4.

While Watchtower cluster fabrics were substantially
cheaper and of greater scale than anything available for
purchase, the absolute cost remained substantial. We
used two observations to drive additional cost optimiza-
tions. First, there is natural variation in the bandwidth
demands of individual clusters. Second, the dominant
cost of our fabrics was in the optics and the associated
fiber.

Hence, we enabled Watchtower fabrics to support de-
populated deployment, where we initially deployed only
50% of the maximum bisection bandwidth. Impor-
tantly, as the bandwidth demands of a depop cluster
grew, we could fully populate it to 100% bisection in
place. Figure 11 shows two high-level options, (A) and
(B), to depopulate switches, optics, and fiber, shown in
red. (A) achieves 50% capacity by depopulating half
of the S2 switches and all fiber and optics touching any
depopulated S2 switch. (B) instead depopulates half S3
switches and associated fiber and optics. (A) shows 2x
more depopulated elements vs. (B) for the same fabric
capacity.

(A) requires all spine S3 chassis to be deployed up
front even though edge aggregation blocks may be de-
ployed slowly leading to higher initial cost. (B) has a
more gradual upfront cost as all spine chassis are not
deployed initially. Another advantage of (B) over (A)
is that each ToR has twice the burst bandwidth.

In Watchtower and Saturn (Section 3.4) fabrics, we
chose option (A) because it maximized cost savings. For
Jupiter fabrics (Section 3.5), we moved to option (B)
because the upfront cost of deploying the entire spine
increased as we moved toward building-size fabrics and
the benefits of higher ToR bandwidth became more ev-
ident.

3.4 Saturn: Fabric Scaling and 10G
Servers

Saturn was the next iteration of our cluster archi-
tecture. The principal goals were to respond to con-
tinued increases in server bandwidth demands and to
further increase maximum cluster scale. Saturn was
built from 24x10G merchant silicon building blocks. A

Figure 12: Components of a Saturn fabric. A 24x10G Pluto
ToR Switch and a 12-linecard 288x10G Saturn chassis (in-
cluding logical topology) built from the same switch chip.
Four Saturn chassis housed in two racks cabled with fiber
(right).

Saturn chassis supports 12-linecards to provide a 288
port non-blocking switch. These chassis are coupled
with new Pluto single-chip ToR switches; see Figure 12.
In the default configuration, Pluto supports 20 servers
with 4x10G provisioned to the cluster fabric for an av-
erage bandwidth of 2 Gbps for each server. For more
bandwidth-hungry servers, we could configure the Pluto
ToR with 8x10G uplinks and 16x10G to servers provid-
ing 5 Gbps to each server. Importantly, servers could
burst at 10Gbps across the fabric for the first time.

3.5 Jupiter: A 40G Datacenter-scale Fab-
ric

As bandwidth requirements per server continued to
grow, so did the need for uniform bandwidth across all
clusters in the datacenter. With the advent of dense
40G capable merchant silicon, we could consider ex-
panding our Clos fabric across the entire datacenter sub-
suming the inter-cluster networking layer. This would
potentially enable an unprecedented pool of compute
and storage for application scheduling. Critically, the
unit of maintenance could be kept small enough relative
to the size of the fabric that most applications could
now be agnostic to network maintenance windows un-
like previous generations of the network.

Jupiter, our next generation datacenter fabric,
needed to scale more than 6x the size of our largest
existing fabric. Unlike previous iterations, we set a re-
quirement for incremental deployment of new network
technology because the cost in resource stranding and
downtime was too high. Upgrading networks by sim-
ply forklifting existing clusters stranded hosts already
in production. With Jupiter, new technology would
need to be introduced into the network in situ. Hence,
the fabric must support heterogeneous hardware and
speeds. Because of the sheer scale, events in the net-
work (both planned and unplanned) were expected to

189

Figure 13: Building blocks used in the Jupiter topology.

be more frequent, requiring Jupiter to react robustly
and gracefully to such events.

At Jupiter scale, we had to design the fabric through
individual building blocks. However, the size of the
building block was a key point of discussion. At one
extreme was the Firehose approach, where each switch
chip was cabled to others on the datacenter floor. On
the other extreme, we could go the way of Watchtower
and Saturn fabrics - i.e., build the largest non-blocking,
two-stage chassis possible with the current merchant sil-
icon, employing the chassis in various roles within the
fabric.

For the first generation of Jupiter (Figure 13), we
chose a middle path regarding building block size. Our
unit of deployment was a Centauri chassis, a 4RU
chassis housing two linecards, each with two switch
chips with 16x40G ports controlled by a separate CPU
linecard. Each port could be configured in 4x10G or
40G mode. There were no backplane data connections
between these chips; all ports were accessible on the
front panel of the chassis.

We employed the Centauri switch as a ToR switch
with each of the 4 chips serving a subnet of machines.
In one ToR configuration, we configured each chip with
48x10G to servers and 16x10G to the fabric. Servers
could be configured with 40G burst bandwidth for the
first time in production (see Table 2). Four Centauris
made up a Middle Block (MB) for use in the aggregation
block. The logical topology of an MB was a 2-stage
blocking network, with 256x10G links available for ToR
connectivity and 64x40G available for connectivity to
the rest of the fabric through the spine.

Each ToR chip connects to eight such MBs with dual
redundant 10G links. The dual redundancy aids fast re-
convergence for the common case of single link failure or
maintenance. Each aggregation block exposes 512x40G
(full pop) or 256x40G (depop) links towards the spine
blocks. Jupiter employs six Centauris in a spine block
exposing 128x40G ports towards the aggregation blocks.
We limited the size of Jupiter to 64 aggregation blocks
for dual redundant links between each spine block and
aggregation block pair at the largest scale, once again
for local reconvergence on single link failure.

Figure 14: Jupiter Middle blocks housed in racks.

We deploy four MBs in a single networking rack as de-
picted in Figure 14. Similarly, a spine networking rack
houses two pre-wired spine blocks. Cabling on the dat-
acenter floor involves connecting fiber cable bundles be-
tween these networking racks and also to ToR switches
atop server racks. In its largest configuration, Jupiter
supports 1.3 Pbps bisection bandwidth among servers.

4. EXTERNAL CONNECTIVITY

4.1 WCC: Decommissioning Cluster
Routers

In this section, we describe how we employed existing
cluster networking building blocks to improve the per-
formance and robustness of our inter cluster networking
fabrics. Chronologically, this work took place between
Watchtower and Saturn.

Through the first few Watchtower deployments, all
cluster fabrics were deployed as bag-on-the-side net-
works coexisting with legacy networks (Figure 8). Time
and experience ameliorated safety concerns, tipping the
balance in favor of reducing the operational complexity,
cost, and performance limitations of deploying two par-
allel networks. Limiting ToR burst bandwidth out of
the cluster was particularly restrictive when migrating
services or copying large search indexes across clusters.

Hence, our next goal was to decommission the Clus-
ter Routers (CRs) by connecting the fabric directly to
the inter-cluster networking layer with Cluster Border
Routers (CBRs). This effort was internally called WCC.
Figure 15 shows various choices for external connectiv-
ity: i) reserve some links from each ToR, ii) reserve
ports in each aggregation block, iii) reserve ports in each
spine block, iv) build a separate aggregation block for
external connectivity. Note that i) was similar to our
approach in Firehose 1.1. Further, both options i) and
ii) could not improve external burst bandwidth assum-
ing shortest path routing.

However, options iii) and iv) provide the entire pool
of external bandwidth to each aggregation block. We

190

Figure 15: Four options to connect to the external network
layer.

chose option iv) because we wanted an isolated layer
of switches to peer with external routers rather than
spreading peering functionality across the entire set of
spine switches. We deemed this approach safer because
we wanted to limit the blast radius from an external
facing configuration change and because it limited the
places where we would have to integrate our in-house
IGP (Section 5.2) with external routing protocols.

As a rule of thumb, we allocated 10% of aggregate
intra-cluster bandwidth for external connectivity us-
ing one to three aggregation blocks. These aggrega-
tion blocks were physically and topologically identical
to those used for ToR connectivity. However, we reallo-
cated the ports normally employed for ToR connectivity
to connect to external fabrics.

We configured parallel links between each CBR
switch in these blocks and an external switch as Link
Aggregation Groups (LAGs) or trunks. We used
standard external BGP (eBGP) routing between the
CBRs and the inter-cluster networking switches. CBR
switches learned the default route via BGP from the
external peers and redistributed the route through
Firepath, our intra-cluster IGP protocol (Section 5.2).

WCC enabled the cluster fabric to be truly stan-
dalone and unlocked high throughput bulk data transfer
between clusters. Moreover, the modular hardware and
software of the CBR switch would find application in
diverse use cases in our networking hierarchy.

4.2 Inter-Cluster Networking
We deploy multiple clusters within the same build-

ing and multiple buildings on the same campus. Given
the relationship between physical distance and network
cost, our job scheduling and resource allocation infras-
tructure leverages campus-level and building-level local-
ity to co-locate loosely affiliated services as close to one
another as possible. The CBRs developed for WCC en-
abled clusters to connect to inter cluster networks with
massive bandwidth. Each aggregation block supported
2.56Tbps of external connectivity in Watchtower fabrics

Figure 16: Two-stage fabrics used for inter-cluster and
intra-campus connectivity.

and 5.76Tbps in Saturn fabrics. However, our exter-
nal networking layers were still based on expensive and
port-constrained vendor gear. The third step in the evo-
lution of our network fabrics involved replacing vendor-
based inter cluster switching. Our approach, Freedome,
targets massive inter-cluster bandwidth within build-
ings and the campus at lower cost than existing solu-
tions.

We employed the BGP capability we developed in our
cluster routers (Section 5.2.5) to build two-stage fabrics
that could speak BGP at both the inter cluster and
intra campus connectivity layers. See Figure 16. We
configure a collection of routers in blocks called Free-
dome Blocks as shown in the top figure. Each block ex-
poses 8x more south-facing ports (cluster facing) than
north-facing ports (next-level in the hierarchy). Each
block has two types of switch roles; the Freedome Edge
Routers delivered south-facing ports while the Free-
dome Border Routers delivered the north-facing ports.
The Freedome Block employs eBGP to connect to both
north and south facing peers. We use iBGP internal to
each block with the Border Routers configured as route
reflectors [6].

A Datacenter Freedome typically comprises 4 inde-
pendent blocks to connect multiple clusters in the same
datacenter building. Inter-cluster traffic local to the
same building would travel from the source cluster’s
CBR layer to the Datacenter Freedome, typically stay-
ing local to the Edge Router layer, and finally to the
CBR layer of the destination cluster. We connect the
Freedome Border Router ports to the campus connec-
tivity layer to the north. The bottom left figure in Fig-
ure 16 depicts a Datacenter Freedome. We provision 8x
more bandwidth for traffic within a building than for
traffic between buildings in the same campus.

Recursively, a Campus Freedome also typically com-
prises 4 independent Freedome Blocks to connect mul-
tiple Datacenter Freedomes in a campus on the south
and the WAN connectivity layer on the north-facing
side. The bottom right figure in Figure 16 depicts a
Campus Freedome.

191

Deploying independent blocks is crucial for maintain-
ing performance on Freedomes since each block can be
independently removed from service, or drained, and up-
graded with an aggregate capacity degradation of 25%.
Once we had rolled out the Freedomes for campus net-
working, the BGP router would also find application in
our WAN deployment [19].

5. SOFTWARE CONTROL

5.1 Discussion
As we set out to build the control plane for our net-

work hardware, we faced the following high level trade-
off: deploy traditional decentralized routing protocols
such as OSPF/IS-IS/BGP to manage our fabrics or
build a custom control plane to leverage some of the
unique characteristics and homogeneity of our cluster
network. Traditional routing protocols had the advan-
tage of being proven and robust.

We chose to build our own control plane for a number
of reasons. First, and most important, existing routing
protocols did not at the time have good support for
multipath, equal-cost forwarding. Second, there were
no high quality open source routing stacks a decade ago.
Further, it was a substantial amount of work to mod-
ify our hardware switch stack to tunnel control-protocol
packets running inline between hardware line cards to
protocol processes. Third, we were concerned about the
protocol overhead of running broadcast-based routing
protocols across fabrics of the scale we were targeting
with hundreds or even thousands of switching elements.
Scaling techniques like OSPF Areas [20] appeared hard
to configure and to reason about [23]. Fourth, network
manageability was a key concern and maintaining hun-
dreds of independent switch stacks and, e.g., BGP con-
figurations seemed daunting.

Our approach was driven by the need to route across
a largely static topology with massive multipath. Each
switch had a predefined role according to its location in
the fabric and could be configured as such. A central-
ized solution where a route controller collected dynamic
link state information and redistributed this link state
to all switches over a reliable out-of-band Control Plane
Network (CPN) appeared to be substantially simpler
and more efficient from a computation and communi-
cation perspective. The switches could then calculate
forwarding tables based on current link state as deltas
relative to the underlying, known static topology that
was pushed to all switches.

Overall, we treated the datacenter network as a sin-
gle fabric with tens of thousands of ports rather than
a collection of hundreds of autonomous switches that
had to dynamically discover information about the fab-
ric. We were, at this time, inspired by the success of
large-scale distributed storage systems with a central-
ized manager [14]. Our design informed the control
architecture for both Jupiter datacenter networks and

Google’s B4 WAN [19]. Details of Jupiter’s control ar-
chitecture are beyond the scope of this paper.

5.2 Routing
We now present the key components of Firepath, our

routing architecture for Firehose, Watchtower, and Sat-
urn fabrics. A number of these components anticipate
some of the principles of modern Software Defined Net-
working, especially in using logically centralized state
and control. First, all switches are configured with the
baseline or intended topology. The switches learn actual
configuration and link state through pair-wise neighbor
discovery. Next, routing proceeds with each switch ex-
changing its local view of connectivity with a centralized
Firepath master, which redistributes global link state to
all switches. Switches locally calculate forwarding ta-
bles based on this current view of network topology. To
maintain robustness, we implement a Firepath master
election protocol. Finally, we leverage standard BGP
only for route exchange at the edge of our fabric, redis-
tributing BGP-learned routes through Firepath.

5.2.1 Neighbor Discovery to Verify Connectivity
Building a fabric with thousands of cables invariably

leads to multiple cabling errors. Moreover, correctly ca-
bled links may be re-connected incorrectly after mainte-
nance such as linecard replacement. Allowing traffic to
use a miscabled link can lead to forwarding loops. Links
that fail unidirectionally or develop high packet error
rates should also be avoided and scheduled for replace-
ment. To address these issues, we developed Neighbor
Discovery (ND), an online liveness and peer correctness
checking protocol.

Neighbor Discovery (ND) uses the configured view
of cluster topology together with a switch’s local ID
to determine the expected peer IDs of its local ports.
It regularly exchanges its local port ID, expected peer
port ID, discovered peer port ID, and link error signal.
Doing so allows ND on both ends of a link to verify
correct cabling.

The Interface Manager (IFM) module on each
switch’s embedded stack continuously monitors the ND
state of each port, declaring a port up to the routing
process only if it is both PHY UP and ND UP. Linecard
LEDs display the ND status of each port to assist phys-
ical debugging in the field. Our monitoring infrastruc-
ture also collects and displays all link status on various
dashboards. ND also serves as a keepalive protocol to
ensure peers are alive and functional. If the remote
software has crashed or shut down, peer ND instances
will eventually report the failure to the interface man-
ager, which in turn will declare the interface down to
the routing process.

5.2.2 Firepath
We support Layer 3 routing all the way to the

ToRs via a custom Interior Gateway Protocol (IGP),
Firepath. Each ToR implements a Layer 2 subnet, i.e.,

192

Figure 17: Firepath component interactions.

Figure 18: Protocol messages between Firepath client and
Firepath master, between Firepath masters and between
CBR and external BGP speakers.

all machines under one ToR are part of a broadcast do-
main. The L3 subnets assigned to ToRs are aligned to
aid aggregation in limited forwarding tables in merchant
silicon.

Firepath implements centralized topology state dis-
tribution, but distributed forwarding table computation
with two main components. A Firepath client runs on
each fabric switch, and a set of redundant Firepath mas-
ters run on a selected subset of spine switches. Clients
communicate with the elected master over the Control
Plane Network (CPN). Figure 17 shows the interaction
between the Firepath client and the rest of the switch
stack. Figure 18 illustrates the protocol message ex-
change between various routing components.

At startup, each client is loaded with the static topol-
ogy of the entire fabric called the cluster config. Each
client collects the state of its local interfaces from the
embedded stack’s interface manager and transmits this
state to the master. The master constructs a Link State
Database (LSD) with a monotonically increasing ver-
sion number and distributes it to all clients via UDP/IP
multicast over the CPN. After the initial full update, a
subsequent LSD contains only the diffs from the previ-
ous state. The entire network’s LSD fits within a 64KB
payload. On receiving an LSD update, each client com-
putes shortest path forwarding with Equal-Cost Multi-
Path (ECMP) and programs the hardware forwarding
tables local to its switch. To prevent overwhelming the

Failure Recovery Convergence type
Event time (ms)

S2-S3 link 125 Local; affected S2, S3 chas-
sis route around failed link

S3 chassis 325 Local; adjacent S2s route
around failed S3

ToR-S2 link 4000 Non-local; all S3s avoid one
S2 for impacted ToR

S2 chassis 325 Local; adjacent S3s, ToRs
route around failed S2

Table 4: Summary of convergence times in a Saturn cluster.

clients, the master throttles the number of LSD changes
it sends to clients.

The master also maintains a keepalive protocol with
the clients. It sends periodic heartbeat messages with
its master ID and the current LSD version number. If
a client loses synchronization with the master, e.g., by
missing an LSD message, it requests a full LSD update.

5.2.3 Path Diversity and Convergence on Fail-
ures

For rapid convergence on interface state change, each
client computes the new routing solution and updates
the forwarding tables independently upon receiving an
LSD update. Since clients do not coordinate during
convergence, the network can experience small transient
loss while the network transitions from the old to the
new state. However, assuming churn is transient, all
switches eventually act on a globally consistent view of
network state.

Table 4 shows the reaction time to route around com-
ponent failures. Due to high path diversity, most fail-
ures require only local convergence, i.e., elements adja-
cent to the failure typically have multiple other viable
next hops to the eventual destination. The switch’s
embedded stack can quickly prune the failed link/next
hop from an ECMP group containing the impacted link.
The ToR-S2 link failure requires non-local convergence
and hence takes longer. In this case, all S3 chassis must
avoid one particular S2 chassis for the IP prefix of the
impacted ToR switch. Even this case can be optimized
if ToRs have multiple links to an S2 switch.

Firepath LSD updates contain routing changes due to
planned and unplanned network events. The frequency
of such events in a typical cluster (from Figure 3) is
approximately 2,000 times/month, 70 times/day, or 3
times/hour.

5.2.4 Firepath Master Redundancy Protocol
The centralized Firepath master is a critical compo-

nent in the Firepath system. It collects and distributes
interface states and synchronizes the Firepath clients
via a keepalive protocol. For availability, we run redun-
dant master instances on pre-selected spine switches.
Switches know the candidate masters via their static
configuration.

193

The Firepath Master Redundancy Protocol (FMRP)
handles master election and bookkeeping between the
active and backup masters. The active master main-
tains a keepalive with the backup masters and ensures
that the current LSD is in sync with the backup mas-
ters on a CPN FMRP multicast group. On startup, a
master enters an Init state where it invalidates its LSD
and waits to hear from an existing master. If it hears
a keepalive from an existing master, it enters a backup
state. Otherwise, it enters the electing state where it
broadcasts an election request to other master candi-
dates. Typically, the winner of the election is the master
with the latest LSD version. Alternately, a preemption
mode elects the master based strictly on a priority such
as highest IP address. Newly elected masters enter a
master state.

FMRP has been robust in production over multiple
years and many clusters. Since master election is sticky,
a misbehaving master candidate does not cause changes
in mastership and churn in the network. In the rare case
of a CPN partition, a multi-master situation may result,
which immediately alerts network operators for manual
intervention.

5.2.5 Cluster Border Router
Our cluster fabrics peer with external networks via

BGP. To this end, we integrated a BGP stack on the
CBR with Firepath. This integration has two key as-
pects: i) enabling the BGP stack on the CBRs to com-
municate inband with external BGP speakers, and ii)
supporting route exchange between the BGP stack and
Firepath. Figure 17B shows the interaction between the
BGP stack, Firepath, and the switch kernel and embed-
ded stack.

For i) we created a Linux network device (netdev) for
each external trunk interface running eBGP. As shown
in Figure 18, BGP protocol packets flow across inband
links; we use the embedded stack’s packet I/O engine
to vector these control packets via the netdevs to the
BGP stack running on the embedded stack.

For ii) a proxy process on the CBR exchanges routes
between BGP and Firepath. This process exports intra-
cluster routes from Firepath into the BGP RIB and
picks up inter-cluster routes from the BGP RIB, re-
distributing them into Firepath. We made a simplify-
ing assumption by summarizing routes to the cluster-
prefix for external BGP advertisement and the /0 de-
fault route to Firepath. In this way, Firepath manages
only a single route for all outbound traffic, assuming
all CBRs are viable for traffic leaving the cluster. Con-
versely, we assume all CBRs are viable to reach any part
of the cluster from an external network. The rich path
diversity inherent to Clos fabrics enables both these sim-
plifying assumptions.

5.3 Configuration and Management
Next, we describe our approach to cluster network

configuration and management prior to Jupiter. Our

primary goal was to manufacture compute clusters and
network fabrics as fast as possible throughout the entire
fleet. Thus, we favored simplicity and reproducibility
over flexibility. We supported only a limited number
of fabric parameters, used to generate all the informa-
tion needed by various groups to deploy the network,
and built simple tools and processes to operate the net-
work. As a result, the system was easily adopted by a
wide set of technical and non-technical support person-
nel responsible for building data centers.

5.3.1 Configuration Generation Approach
Our key strategy was to view the entire cluster net-

work top-down as a single static fabric composed of
switches with pre-assigned roles, rather than bottom-
up as a collection of switches individually configured
and assembled into a fabric. We also limited the num-
ber of choices at the cluster-level, essentially providing
a simple menu of fabric sizes and options, based on the
projected maximum size of a cluster as well as the chas-
sis type available.

The configuration system is a pipeline that accepts
a specification of basic cluster-level parameters such as
the size of the spine, base IP prefix of the cluster and the
list of ToRs and their rack indexes. It then generates
a set of output files for various operations groups: i) a
simplified bill of materials for supply chain operations;
ii) rack layout details, cable bundling and port mapping
for datacenter operations; iii) CPN design and switch
addressing details (e.g., DNS) for network operations;
iv) updates to network and monitoring databases and
systems; v) a common fabric configuration file for the
switches; and vi) summary data to feed graphical views
to audit the logical topology and cluster specifications.

We distribute a single monolithic cluster configura-
tion to all switches (chassis and ToRs) in the cluster.
Each switch simply extracts its relevant portion. Doing
so simplifies configuration generation but every switch
has to be updated with the new config each time the
cluster configuration changes. Since cluster configura-
tions do not change frequently, this additional overhead
is not significant and often necessary since Firepath re-
quires global topology state.

5.3.2 Switch Management Approach
We designed a simple management system on the

switches. We did not require most of the standard net-
work management protocols. Instead, we focused on
protocols to integrate with our existing server manage-
ment infrastructure. We benefited from not drawing
arbitrary lines between server and network infrastruc-
ture; in fact, we set out to make switches essentially
look like regular machines to the rest of fleet. Examples
include the image management and installation, large
scale monitoring, syslog collection, and global alerting.

The embedded stack exports a single Common Man-
agement Access Layer (CMAL) interface for external
systems to manage the device. We limit administra-

194

Figure 19: Alerts in Firehose/Watchtower fabrics over 9
months in ’08-’09.

tive updates to draining or disabling specific ports.
Since there are multiple software components running
on each switch, they must all simultaneously accept a
new switch configuration. Hence, we employ a stan-
dard two-phase verify-commit protocol for components
on the switch orchestrated by CMAL to deploy new
switch configurations.

Management clients retrieve switch status through
a simple API. Important services include a local CLI
for an operator to read switch status for debugging, a
minimal SNMP agent to support legacy SNMP moni-
tors, and a specific monitoring agent that exports data
to the network and machine monitoring system. This
last client allows us to reuse all the scalable monitoring,
alerting, time-series databases (TSDB) systems built to
manage our server machine fleet, saving a huge amount
of work. Figure 19 presents a sample breakdown of the
type of monitoring/alerts observed in our clusters for a
period of 9 months in 2008-2009. The high incidence
of chassis linecard failures was due to memory errors
on a particular version of merchant silicon and is not
reflective of a trend in linecard failure rates.

5.3.3 Fabric Operation and Management
For fabric operation and management, we continued

with the theme of leveraging the existing scalable infras-
tructure built to manage and operate the server fleet.
We built additional tools that were aware of the network
fabric as a whole, thus hiding complexity in our manage-
ment software. As a result, we could focus on develop-
ing only a few tools that were truly specific to our large
scale network deployments, including link/switch qual-
ification, fabric expansion/upgrade, and network trou-
bleshooting at scale. Also important was collaborating
closely with the network operations team at Google to
provide training before introducing each major network
fabric generation, expediting the ramp of each technol-
ogy across the fleet.

Figure 20 summarizes our approach to fabric software
upgrades. Rather than support in-service firmware up-
grade on our switches, we exploit fabric redundancy for
upgrades. We would like the degradation in fabric ca-
pacity not to exceed 25%. The figure shows two ways to
upgrade the fabric chassis in multiple steps in the Clos

Figure 20: Multi-color fabric chassis upgrade.

topology. The left figure divides all chassis into four
sets. When upgrading the red set, links in dashed red
are disabled. However, the figure illustrates that the
fabric capacity degrades to 56.25% (75%*75%). The
right figure shows a more graceful but more time con-
suming upgrade process involving eight sets. Upgrading
one switch at a time would take too long.

Troubleshooting misbehaving traffic flows in a net-
work with such high path diversity is daunting for op-
erators. Therefore, we extended debugging utilities such
as traceroute and ICMP to be aware of the fabric topol-
ogy. This helped with triangulating switches in the net-
work that were potentially blackholing flows. We proac-
tively detect such anomalies by running probes across
servers randomly distributed in the cluster. On probe
failures, these servers automatically run traceroutes and
identify suspect failures in the network.

6. EXPERIENCE

6.1 Fabric Congestion
Despite the capacity in our fabrics, our networks

experienced high congestion drops as utilization ap-
proached 25%. We found several factors contributed
to congestion: i) inherent burstiness of flows led to in-
admissible traffic in short time intervals typically seen
as incast [8] or outcast [21]; ii) our commodity switches
possessed limited buffering, which was sub optimal for
our server TCP stack; iii) certain parts of the network
were intentionally kept oversubscribed to save cost, e.g.,
the uplinks of a ToR; and iv) imperfect flow hashing es-
pecially during failures and in presence of variation in
flow volume.

We used several techniques to alleviate the congestion
in our fabrics. First, we configured our switch hardware
schedulers to drop packets based on QoS. Thus, on con-
gestion we would discard lower priority traffic. Second,
we tuned the hosts to bound their TCP congestion win-
dow for intra-cluster traffic to not overrun the small
buffers in our switch chips. Third, for our early fabrics,
we employed link-level pause at ToRs to keep servers
from over-running oversubscribed uplinks. Fourth, we
enabled Explicit Congestion Notification (ECN) on our
switches and optimized the host stack response to ECN
signals [3]. Fifth, we monitored application bandwidth
requirements in the face of oversubscription ratios and
could provision bandwidth by deploying Pluto ToRs

195

Figure 21: Congestion hotspots in a Saturn fabric.

with four or eight uplinks as required. Similarly, we
could repopulate links to the spine if the depop mode
of a fabric was causing congestion. Sixth, the merchant
silicon had shared memory buffers used by all ports,
and we tuned the buffer sharing scheme on these chips
so as to dynamically allocate a disproportionate frac-
tion of total chip buffer space to absorb temporary traf-
fic bursts. Finally, we carefully configured switch hash-
ing functionality to support good ECMP load balancing
across multiple fabric paths.

Our congestion mitigation techniques delivered sub-
stantial improvements. We reduced the packet discard
rate in a typical Clos fabric at 25% average utilization
from 1% to < 0.01%. Figure 21 shows the breakdown
among the three principal sources of congestion in a rep-
resentative Saturn cluster with 10G hosts. The largest
source of loss comes from host fanin - traffic fanning in
from the ToRs to certain hosts. The next biggest source
is ToR fanin, which may be caused by imperfect hash-
ing and incast communication to specific ToRs. Finally,
a relatively small fraction of discards is due to oversub-
scription of ToR uplinks towards the fabric. Further
improving fabric congestion response remains an ongo-
ing effort.

6.2 Outages
While the overall availability of our datacenter fabrics

has been satisfactory, our outages fall into three cate-
gories representing the most common failures in pro-
duction: i) control software problems at scale; ii) aging
hardware exposing previously unhandled failure modes;
and iii) misconfigurations of certain components.

6.2.1 Control software problems at large scale
In the first example, a datacenter power event caused

the entire fabric to restart simultaneously. However, the
control software did not converge without manual in-
tervention. The instability took place because our live-
ness protocol (ND) and route computation contended
for limited CPU resources on embedded switch CPUs.
On entire fabric reboot, routing experienced huge churn,
which in turn led ND not to respond to heartbeat mes-
sages quickly enough. This in turn led to a snowball
effect for routing where link state would spuriously go
from up to down and back to up again. We stabilized

the network by manually bringing up a few blocks at a
time.

Going forward, we included the worst case fabric re-
boot in our test plans. Since the largest scale datacenter
could never be built in a hardware test lab, we launched
efforts to stress test our control software at scale in vir-
tualized environments. We also heavily scrutinized any
timer values in liveness protocols, tuning them for the
worst case while balancing slower reaction time in the
common case. Finally, we reduced the priority of non-
critical processes that shared the same CPU.

6.2.2 Aging hardware exposes unhandled fail-
ure modes

Over years of deployment, our inbuilt fabric redun-
dancy degraded as a result of aging hardware. For ex-
ample, our software was vulnerable to internal/back-
plane link failures, leading to rare traffic blackholing.
Another example centered around failures of the Con-
trol Plane Network (CPN). Each fabric chassis had dual
redundant links to the CPN in active-standby mode.
We initially did not actively monitor the health of both
the active and standby links. With age, the vendor gear
suffered from unidirectional failures of some CPN links
exposing unhandled corner cases in our routing proto-
cols. Both these problems would have been easier to
mitigate had the proper monitoring and alerting been
in place for fabric backplane and CPN links.

6.2.3 Component Misconfiguration
A prominent misconfiguration outage was on a Free-

dome fabric. Recall that a Freedome chassis runs the
same codebase as the CBR with its integrated BGP
stack. A CLI interface to the CBR BGP stack sup-
ported configuration. We did not implement locking
to prevent simultaneous read/write access to the BGP
configuration. During a planned BGP reconfiguration
of a Freedome block, a separate monitoring system co-
incidentally used the same interface to read the running
config while a change was underway. Unfortunately, the
resulting partial configuration led to undesirable behav-
ior between Freedome and its BGP peers.

We mitigated this error by quickly reverting to the
previous configuration. However, it taught us to harden
our operational tools further. It was not enough for
tools to configure the fabric as a whole; they needed to
do so in a safe, secure and consistent way.

7. CONCLUSION
This paper presents a retrospective on ten years and

five generations of production datacenter networks. We
employed complementary techniques to deliver more
bandwidth to larger clusters than would otherwise be
possible at any cost. We built multi-stage Clos topolo-
gies from bandwidth-dense but feature-limited mer-
chant switch silicon. Existing routing protocols were
not easily adapted to Clos topologies. We departed

196

from conventional wisdom to build a centralized route
controller that leveraged global configuration of a pre-
defined cluster plan pushed to every datacenter switch.
This centralized control extended to our management
infrastructure, enabling us to eschew complex proto-
cols in favor of best practices from managing the server
fleet. Our approach has enabled us to deliver substan-
tial bisection bandwidth for building-scale fabrics, all
with significant application benefit.

8. ACKNOWLEDGEMENTS
Many teams contributed to the success of the data-

center network within Google. In particular, we would
like to acknowledge the Platforms Networking (PlaNet)
Hardware and Software Development, Platforms Soft-
ware Quality Assurance (SQA), Mechanical Engineer-
ing, Cluster Engineering (CE), Network Architecture
and Operations (NetOps), Global Infrastructure Group
(GIG), and Site Reliability Engineering (SRE) teams,
to name a few. We would also like to thank our shep-
herd Ming Zhang as well as the anonymous SIGCOMM
reviewers for their useful feedback.

9. REFERENCES
[1] Ahn, J. H., Binkert, N., Davis, A., McLaren, M.,

and Schreiber, R. S. HyperX: topology, routing,
and packaging of efficient large-scale networks. In
Proc. High Performance Computing Networking,
Storage and Analysis (2009), ACM, p. 41.

[2] Al-Fares, M., Loukissas, A., and Vahdat, A. A
scalable, commodity data center network architecture.
In ACM SIGCOMM Computer Communication
Review (2008), vol. 38, ACM, pp. 63–74.

[3] Alizadeh, M., Greenberg, A., Maltz, D. A.,
Padhye, J., Patel, P., Prabhakar, B., Sengupta,
S., and Sridharan, M. Data center TCP (DCTCP).
ACM SIGCOMM computer communication review 41,
4 (2011), 63–74.

[4] Barroso, L. A., Dean, J., and Holzle, U. Web
search for a planet: The Google cluster architecture.
Micro, Ieee 23, 2 (2003), 22–28.

[5] Barroso, L. A., and Hölzle, U. The datacenter as
a computer: An introduction to the design of
warehouse-scale machines. Synthesis lectures on
computer architecture 4, 1 (2009), 1–108.

[6] Bates, T., Chen, E., and Chandra, R. Bgp route
reflection: An alternative to full mesh internal bgp
(ibgp). RFC 4456, RFC Editor, April 2006.
http://www.rfc-editor.org/rfc/rfc4456.txt.

[7] Calder, B., Wang, J., Ogus, A., Nilakantan, N.,
Skjolsvold, A., McKelvie, S., Xu, Y., Srivastav,
S., Wu, J., Simitci, H., et al. Windows Azure
Storage: a highly available cloud storage service with
strong consistency. In Proceedings of the Twenty-Third
ACM Symposium on Operating Systems Principles
(2011), ACM, pp. 143–157.

[8] Chen, Y., Griffith, R., Liu, J., Katz, R. H., and
Joseph, A. D. Understanding TCP incast throughput
collapse in datacenter networks. In Proceedings of the
1st ACM workshop on Research on enterprise
networking (2009), ACM, pp. 73–82.

[9] Clos, C. A Study of Non-Blocking Switching
Networks. Bell System Technical Journal 32, 2 (1953),
406–424.

[10] Dean, J., and Ghemawat, S. MapReduce: simplified
data processing on large clusters. Communications of
the ACM 51, 1 (2008), 107–113.

[11] Dietz, H. G., and Mattox, T. I. KLAT2’s flat
neighborhood network. Proceedings of the Extreme
Linux track in the 4th Annual Linux Showcase,
Atlanta, GA (2000).

[12] Farrington, N., Rubow, E., and Vahdat, A. Data
center switch architecture in the age of merchant
silicon. In Proc. HOT Interconnects, 2009. 17th IEEE
Symposium on (2009), pp. 93–102.

[13] Feamster, N., Rexford, J., and Zegura, E. The
Road to SDN: An Intellectual History of
Programmable Networks. ACM Queue 11, 12
(December 2013).

[14] Ghemawat, S., Gobioff, H., and Leung, S.-T. The
Google file system. In ACM SIGOPS Operating
Systems Review (2003), vol. 37, ACM, pp. 29–43.

[15] Greenberg, A., Hamilton, J. R., Jain, N.,
Kandula, S., Kim, C., Lahiri, P., Maltz, D. A.,
Patel, P., and Sengupta, S. VL2: a scalable and
flexible data center network. In Proc. ACM
SIGCOMM Computer Communication Review (2009),
pp. 51–62.

[16] Guo, C., Lu, G., Li, D., Wu, H., Zhang, X., Shi,
Y., Tian, C., Zhang, Y., and Lu, S. BCube: A high
performance, server-centric network architecture for
modular data centers. In Proc. ACM SIGCOMM
(2009), pp. 63–74.

[17] Guo, C., Wu, H., Tan, K., Shi, L., Zhang, Y.,
and Lu, S. Dcell: a scalable and fault-tolerant
network structure for data centers. ACM SIGCOMM
Computer Communication Review 38, 4 (2008), 75–86.

[18] Isard, M., Budiu, M., Yu, Y., Birrell, A., and
Fetterly, D. Dryad: distributed data-parallel
programs from sequential building blocks. In Proc.
ACM SIGOPS Operating Systems Review (2007),
pp. 59–72.

[19] Jain, S., Kumar, A., Mandal, S., Ong, J.,
Poutievski, L., Singh, A., Venkata, S.,
Wanderer, J., Zhou, J., Zhu, M., Zolla, J.,
Hölzle, U., Stuart, S., and Vahdat, A. B4:
Experience with a globally-deployed software defined
WAN. In Proc. ACM SIGCOMM (2013), pp. 3–14.

[20] Moy, J. OSPF Version 2. STD 54, RFC Editor, April
1998. http://www.rfc-editor.org/rfc/rfc2328.txt.

[21] Prakash, P., Dixit, A. A., Hu, Y. C., and
Kompella, R. R. The TCP Outcast Problem:
Exposing Unfairness in Data Center Networks. In
Proc. NSDI (2012), pp. 413–426.

[22] Singla, A., Hong, C.-Y., Popa, L., and Godfrey,
P. B. Jellyfish: Networking Data Centers Randomly.
In NSDI (2012), vol. 12, pp. 17–17.

[23] Thorup, M. OSPF Areas Considered Harmful. IETF
Internet Draft 00, individual, April 2003. http:
//tools.ietf.org/html/draft-thorup-ospf-harmful-00.

[24] Vahdat, A., Al-Fares, M., Farrington, N.,
Mysore, R. N., Porter, G., and Radhakrishnan,
S. Scale-Out Networking in the Data Center. IEEE
MICRO, 4 (August 2010), 29–41.

197

http://www.rfc-editor.org/rfc/rfc4456.txt
http://www.rfc-editor.org/rfc/rfc2328.txt
http://tools.ietf.org/html/draft-thorup-ospf-harmful-00
http://tools.ietf.org/html/draft-thorup-ospf-harmful-00

	Introduction
	Background and Related Work
	Network Evolution
	Firehose 1.0
	Firehose 1.1: First Production Clos
	Watchtower: Global Deployment
	Saturn: Fabric Scaling and 10G Servers
	Jupiter: A 40G Datacenter-scale Fabric

	External Connectivity
	WCC: Decommissioning Cluster Routers
	Inter-Cluster Networking

	Software Control
	Discussion
	Routing
	Neighbor Discovery to Verify Connectivity
	Firepath
	Path Diversity and Convergence on Failures
	Firepath Master Redundancy Protocol
	Cluster Border Router

	Configuration and Management
	Configuration Generation Approach
	Switch Management Approach
	Fabric Operation and Management

	Experience
	Fabric Congestion
	Outages
	Control software problems at large scale
	Aging hardware exposes unhandled failure modes
	Component Misconfiguration

	Conclusion
	Acknowledgements
	References

