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ABSTRACT
Backscatter provides dual-benefits of energy harvesting
and low-power communication, making it attractive to
a broad class of wireless sensors. But the design of a
protocol that enables extremely power-efficient radios
for harvesting-based sensors as well as high-rate data
transfer for data-rich sensors presents a conundrum. In
this paper, we present a new fully asymmetric backscat-
ter communication protocol where nodes blindly trans-
mit data as and when they sense. This model enables
fully flexible node designs, from extraordinarily power-
efficient backscatter radios that consume barely a few
micro-watts to high-throughput radios that can stream
at hundreds of Kbps while consuming a paltry tens of
micro-watts. The challenge, however, lies in decoding
concurrent streams at the reader, which we achieve us-
ing a novel combination of time-domain separation of
interleaved signal edges, and phase-domain separation
of colliding transmissions. We provide an implemen-
tation of our protocol, LF-Backscatter, and show that
it can achieve an order of magnitude or more improve-
ment in throughput, latency and power over state-of-art
alternatives.
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1. INTRODUCTION
As we enter a world where sensors are embedded in

walls, wearables, and within bodies, a question that
demands attention is what wireless technology is best
suited for these devices. Backscatter has emerged as a
strong contender for this regime because of its ability to
deliver power while simultaneously offering an ultra-low
power wireless backhaul.
One of the extraordinary benefits of backscatter is

that it can help design wireless sensors that operate at
end-to-end power budgets of under a few micro-watts,
thereby enabling battery-less operation. For example,
a backscatter-based temperature sensor that samples at
1Hz, and operates in a sense-transmit loop with no oth-
er overheads (i.e. no receive circuit, no protocol over-
head, etc) would barely consume 10 µW of power, which
makes it possible for such devices to operate continuous-
ly using a small amount of harvested power.
Backscatter is also attractive as a replacement to ac-

tive radios on battery-powered sensors since it can sup-
port hundreds of Kbps while consuming only tens of
micro-watts of power [26]. Backscatter achieves this
power efficiency by shifting carrier generation to the
reader, and only uses power for clocking its RF tran-
sistor. High-speed ultra low power radios can enable
a paradigm shift in wireless sensing — continuous da-
ta offload from a variety of data-rich sensors such as
cameras and microphones becomes extremely efficient,
thereby enabling sophisticated distributed sensing ap-
plications.
While backscatter offers many advantages for wireless

sensors, our ability to realize these benefits depends on
the design choices made by the protocol. Seemingly in-
nocuous protocol choices have important ramification-
s. For example, a protocol designed with the expecta-
tion that the radio can support bitrates of hundreds of
Kbps significantly impacts power efficiency for simple
low-rate sensors such as the backscatter-based temper-
ature sensor described above. Despite its low sampling
rate and limited communication needs, such a sensor
would need to accumulate samples in a buffer, and use
a high-speed clock to toggle its RF transistor, which in-
creases power consumption by several tens of µWs over
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a simpler design that used a slower clock and no pack-
et buffers. This power difference hinders its ability to
operate in a battery-less manner. On the other hand,
optimizing the protocol for stringently constrained sen-
sors by reducing the transmit and receive bitrate, would
clearly hurt overall throughput. Even simple design
choices like reader feedback to the tag (e.g. TDMA
slot assignment messages [5]) incurs the cost of message
decoding at the tag, which adds to the power budget.
At its core, the issue is that protocols are often opti-
mized for specific hardware capabilities, and it appears
difficult to shoehorn a wide range of hardware scenarios
into a protocol without sacrificing efficiency.
While dealing with hardware heterogeneity may ap-

pear to be an intractable problem, an examination of
the capabilities at the reader presents intriguing pos-
sibilities. We have a powerful reader that can sample
several orders of magnitude faster than the tags can
modulate the signal (even the fastest sensor tags are
barely going to exceed 100 Kbps). For example, take
the case of a USRP-based EPC Gen 2 reader reading
data from backscatter sensors — the reader can sam-
ple at 25 Mega samples/second, and even if a tag can
transmit at 100 kbps, this means that less than 1% of
the time-domain samples contain useful information.
In this paper, we argue that existing backscatter pro-

tocols do not take full advantage of its inherent asym-
metry. Rather, these protocols make assumptions that
often diminish the flexibility to design lower power or
higher speed backscatter systems. Our line of attack is
the following: we allow nodes to use the least restrictive
backscatter protocol, a laissez-faire approach that lets
nodes blindly transmit data once they see the carrier
signal, and focus on the problem of decoding these con-
current streams by leveraging the more powerful reader.
Consider the potential benefits of such a fully asymmet-
ric design. One could envisage an extremely low-power
tag that is virtually free of any computational logic —
it senses and immediately transmits the digitized signal
oblivious to any other wireless traffic. Such a design
would need no decoding, no MAC, no packet buffers,
and no high-speed RF oscillators. The model would
benefit faster tags as well — a higher speed backscatter
tag would not need to pause and wait for the slow tags to
transmit their bits. But despite the intrinsic elegance of
the laissez-faire approach, the pragmatics seem daunt-
ing. How can the reader cleanly separate the signals
from different tags operating at widely different rates?
Our fundamental insight is that the laissez-faire ap-

proach is asynchronous, hence it results in temporal
interleaving of signal edges caused by toggling of the
transmit antenna at different nodes. By leveraging the
reader’s capability to sample at a much higher rate than
the node, this time-domain asynchrony can be exploit-
ed to enable concurrent transfers. But temporal separa-
tion is insufficient on its own — edge transitions can col-
lide since nodes independently decide when to transmit.
To separate such collided signals, we take advantage of

phase information about the backscattered signals. The
backscatter baseband signal can be represented as com-
prised of a sine and a cosine wave. This provides us
with a phase vector in the in-phase and quadrature di-
mensions (IQ vector). By leveraging the fact that colli-
sions result in different clusters in the IQ plane, we can
separate collided signals without requiring any special
mechanism at the tag. The benefit of using time-domain
separation followed by IQ-domain separation is impor-
tant to emphasize — by itself, time-domain separation
would not be able to resolve collisions, and IQ-domain
separation would only support limited concurrency, but
in tandem, they can enable substantial concurrency.
This paper is about the details of designing and im-

plementing such a laissez-faire backscatter protocol. We
ask and answer many questions to make the scheme
practical — how can we separate signals across tags
by leveraging the differences in signals across time, in-
phase, and quadrature? what are the minimal restric-
tions we may want to impose to the laissez-faire model
to ensure that the system actually works in practice?
what are the performance benefits in terms of through-
put, power, and latency? can the scheme support ex-
tremely constrained harvesting-based tags and higher
rate battery-assisted tags?, and so on. Through this
exploration, we hope to convince the reader that we
have a system that retains much of the elegance and
benefits of the laissez-faire approach, while imposing a
few restrictions to make the technique practical.
In summary, our key contributions are:

• We design a novel backscatter system, LF-Back-
scatter, that is fully asymmetric and enables flexi-
ble radio architectures at the tag, while pushing all
decoding complexity to the reader. Our decoding
algorithm leverages time, in-phase, and quadra-
ture information to enable a high degree of concur-
rent transmissions from backscatter sensors. Our
design has several novel contributions to extract
edges robustly from interleaved signals, separate
collisions, and correct errors, all without adding
complexity at the tag.

• We build a full software and hardware prototype
of LF-Backscatter, and evaluate its benefits in a
range of scenarios. In a sixteen node experimen-
t, we show that LF-Backscatter’s throughput is
7.9× higher than Buzz and 16.4× higher than T-
DMA, its latency for reading identifiers is 9.5×
faster than Buzz and 17× faster than TDMA, and
its energy-efficiency is 20× lower than Buzz and
two orders of magnitude lower than RFID chips
[23].

2. CASE FOR LF-BACKSCATTER
In this section, we look at a variety of methods that

have been proposed for supporting backscatter commu-
nication from multiple tags. We focus on backscatter
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Figure 1: Dynamics in received signal under different scenarios.

using Amplitude Shift Keying (ASK), which is the dom-
inant backscattering technique since it provides contin-
uous power to tags and enables relatively simple receiver
design [8]. We start with sequential access, and work
our way through previously proposed concurrent trans-
mission methods, and finally discuss LF-Backscatter.

2.1 TDMA and CDMA-based approaches
Time Division Multiple Access (TDMA) is a natural

choice for backscatter because the reader has the re-
sources to co-ordinate transfer by estimating the num-
ber of tags, determining how many slots to use, and
marking slot boundaries. Most backscatter-based sys-
tems are based on TDMA [7, 10, 25, 27], the most well
known being EPC Gen 2 [5].
While TDMA is very well understood and easy to de-

ploy, it is not efficient when considering heterogeneous
tags with varying capabilities. If TDMA chooses to op-
erate at a rate that is the lowest common denominator
of the nodes in the network, then it would be ponderous-
ly slow and overall throughput would suffer. If TDMA
chooses a faster rate that is high enough to offer bet-
ter throughput, it forces tags to use more power-hungry
components like faster clocks and larger buffers. TDMA
is also less than ideal in that the reader issues periodic
control messages, and nodes need to expend energy in
decoding these messages. Finally, TDMA vastly under-
utilizes the sampling capability at the reader since it
serializes transmissions.
Code Division Multiple Access (CDMA) is anoth-

er approach for enabling concurrent transmission for
backscatter sensors [12, 15, 17]. Here, each sensor ex-
ploits an orthogonal code for encoding data where each
bit is converted to a long PN sequence (hundreds of bits
in length). CDMA is inefficient for backscatter because
data transmission takes a much longer time, which hurts
throughput, or the tags need to operate higher frequen-
cy radios, which increases power consumption by orders
of magnitude [22].

2.2 Linear Signal Separation
A recent concurrency-based backscatter protocol, Buz-

z [22], is based on the idea that backscatter signals com-

bine linearly and therefore can be separated using ma-
trix inversion methods. Buzz lets all nodes transmit in
a synchronous bit-by-bit manner, so the received signal
can be expressed as:

y = dm×nhn×nbn×1

=

⎛

⎜⎜⎜⎝

d11 . . . d1n
d21 . . . d2n
...

. . .
...

dm1 . . . dmn

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

h1 0 . . . 0
0 h2 . . . 0
...

...
. . .

...
0 0 . . . hn

⎞

⎟⎟⎟⎠

⎛

⎜⎜⎜⎝

b1
b2
...
bn

⎞

⎟⎟⎟⎠
(1)

where y, the received symbol at the reader, is a lin-
ear combination of the complex channel coefficient cor-
responding to node i, hi, the bit being transmitted by
the node, bi, and a randomization matrix, dij . Once
the randomization matrix and the channel coefficients
from each node are known, the function can be inverted
to estimate the bits transmitted by each tag.
To implement this method in practice, Buzz first de-

termines the channel coefficients of each node by using
compressive sensing-based estimation. Once the chan-
nel coefficients are known, nodes transmit their bit-
s in lock-step, re-transmitting each bit multiple times
with different random combinations as determined by
a pre-defined random matrix dm×n. This allows the
decoder to observe different combinations of the con-
current transmissions, enabling it to decode the stream.
Once a combination with low error is determined, nodes
move on to transmit the next message.
There are two problems that make this method less

than ideal for heterogeneous backscatter sensors. One
practical problem is that nodes need to transmit their
bits in lock-step. This implies that the clocks on all
nodes need to operate at the same rate, which is a rea-
sonable assumption for RFIDs but not for sensors with
heterogeneous capabilities and clock speeds. Another
problem is that the channel coefficients need to be re-
estimated to deal with changing environments and tag
positions. Channel coefficients vary for three reason-
s. The first is when there is mobility of objects in the
vicinity of the tag. In Figure 1(a), a tag is stationary in
front of a reader while an individual moves around the
room, resulting in substantial changes to the channel co-

257



−2 −1 0 1 2
−2

−1.5

−1

−0.5

0

0.5

1

1.5

2

I Channel

Q
 C

ha
nn

el

(a) QAM IQ clusters.

−0.56 −0.54 −0.52 −0.5 −0.48 −0.46 −0.44
0.12

0.13

0.14

0.15

0.16

0.17

0.18

0.19

I Channel

Q
 C

ha
nn

el

(b) Clustering of 2 tags

−0.05 0 0.05 0.1 0.15 0.2 0.25
−0.05

0

0.05

0.1

0.15

0.2

0.25

0.3

I Channel

Q
 C

ha
nn

el

(c) IQ clusters of 6 tags

Figure 2: IQ Clusters: (a) shows structured clusters in QAM, (b) and (c) show unstructured clusters.
As the number of nodes increases, clusters are harder to separate.

efficients. Second, channel coefficients are also sensitive
to movements of the tag. In Figure 1(b), a tag’s ori-
entation is varied by rotating it without displacing the
tag, again resulting in significant changes to the chan-
nel coefficients. Third, channel coefficients also change
when there is near-field coupling between the antennas
of two or more tags. Figure 1(c) illustrates this case
with a simple experiment where two tags were placed
far apart, and then brought closer together. As shown,
both channel coefficients are unchanged when the tags
are about 1m apart, but when tags become closer to-
gether (roughly 5cm), there is near-field coupling across
the antennas of the tags resulting in variations of chan-
nel coefficients. While such variations depend on the
dynamics in the environment, adapting to them will in-
cur protocol overhead for channel estimation prior to
communication, and associated tag complexity for sup-
porting the protocol functions. Buzz [22] does not ex-
plicitly address this problem since it targets one-shot
RFID identification.

2.3 Cluster-based Separation of Signals
An alternative approach that has been considered in

prior work is separation in the IQ plane [6]. When tags
transmit simultaneously, their phase and amplitude in-
formation (IQ vector) creates multiple clusters, where
each cluster corresponds to a specific combination of
values from the tags. This approach could be viewed as
the unstructured analogue of methods like Quadrature
Amplitude Modulation (QAM) shown in Figure 2(a).
While the signals in QAM are structured to be as far
apart as possible, the clusters in this case are unstruc-
tured and depend on channel coefficients between each
node and the reader.
For example, consider that there are two nodes that

transmit simultaneously (lets call them 1 and 2) . De-
fine V (i, si) as the complex vector corresponding to n-
ode i when its antenna state is si (si is 0 when antenna
is detuned and 1 when it is tuned). This vector is com-
posed of the I (in phase) and Q (quadrature) channels,
and can be expressed as V (i, si) = I(i, si) + Q(i, si).

Thus, the total signal reflected by the two nodes can be
one of four options, V (1, s1) + V (2, s2), where s1, s2 ∈
{0, 1}. Besides the signal reflected by the nodes, the
reader also receives the signal reflected by the environ-
ment. For simplicity, let us assume that the reflection
from the environment is a constant, so it won’t affect
the number of clusters, but will only add an offset to
them.
Figure 2(b) shows the empirically obtained IQ con-

stellation of received signal from the 2 nodes. We can
see four dense clusters with sparse points between them.
The sparse points are imperfect transitions between d-
ifferent states of transmitted signal.
A fundamental issue with this method is that it sim-

ply does not scale to a larger number of nodes. In the
two nodes example, it is easy to see that simply choosing
the closest cluster to a received vector can decode the
signal from each node with high probability, but when
we try to increase the number of tags, performance us-
ing this method degrades rapidly. This is because given
N nodes (N ≥2), there are 2N clusters in the IQ plot,
resulting in clusters being closer to each other. An ex-
ample with six nodes is shown in Figure 2(c). The figure
has 64 clusters that are very close to each other, and d-
well time in each cluster is short. This means that there
are more points lie between clusters. In this case, sep-
arating the signal by classifying clusters is challenging.
This drawback has been noted in prior work, for exam-
ple, Angerer et al [6] also conclude that the technique
does not scale to beyond two nodes.

2.4 Concurrency in Time and IQ
Our laissez-faire approach to backscatter is radically

different from the above approaches. The underlying
principle for signal separation is to leverage three axes
— time, in-phase, and quadrature. When asynchronous
ASK signals from tags are combined, two things happen
— edges are created whenever there is a transition on
any one tag, and the signals combine depending on the
state of each tag as well as state of the environment.
The underlying intuition in LF-Backscatter is that both
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the edges and the combined signal are important for
separating out the concurrent transmissions. Since the
reader can oversample the received signal and edges are
temporally localized, there is a lot of room to interleave
edges within the time dimension of the combined signal.
As a concrete example, let us see how many UMass

Moo tags, each transmitting at 100 Kbps, can be sup-
ported by a USRP reader sampling at 25 Mega-samples-
per-second. This means that for each bit transmitted
by a tag, the reader samples 250 times. An edge is
roughly 3 samples wide at the reader’s sampling rate,
which means that we can stack 250

3 = 83 edges one after
the other, so we can support a fairly large number of
fast tags.
Of course, perfect interleaving is not achievable in

practice, and we need methods to deal with the case
where edges from different tags collide. But the fact
that edges are finely localized in time means that on-
ly a small fraction of the concurrent transmitters are
colliding at this edge. We take advantage of the tem-
poral localization of collisions and make tags transmit
periodically at multiples of a base-rate, which ensures
that colliding nodes repeatedly do so at the same time,
thereby giving us more information that can be used to
separate the signals. While both linear separation and
cluster-based separation are possible candidates given
that we have a small number of colliders to separate,
we use the latter since it does not require repeated esti-
mation of the channel coefficients to each tag, and is less
sensitive to changes in environment and orientation.
At a high level, the above description summarizes the

main idea in this paper, but the devil is in the details.
We have made several assumptions to narrate the high-
level story — we assume that signal edges can be sepa-
rated in a robust manner, that edges can be finely sep-
arated in time to maximize concurrency, that cluster-
based separation can identify which bits are being sent
by the colliding tags, that we can associate detected bit-
s to the appropriate tag, and so on. We look at these
thorny issues in the following section.

3. LF-Backscatter DESIGN
LF-Backscatter is designed to do as much as possible

at the reader to ensure minimal complexity at the tag.
We describe the sequence of stages involved in recover-
ing data transmitted by the tags, starting with reliable
edge detection.

3.1 Reliable edge detection
The first challenge that we face is reliably detecting

signal edges, which is central to enabling concurrent
laissez-faire transmission. It would seem that we can
extract edges by using edge detection techniques on the
combined signal received at the reader, but this turns
out to be brittle.
Let us understand why this is the case. The backscat-

ter reader sends a carrier wave toward the device, which

can be represented as compromise of a sine wave and
a cosine wave. These two parts are known as in-phase
and quadrature signals. A backscatter device toggles
its transistor and reflects this signal back to the read-
er. The amplitude of the signal is the total power of
the received signal. To observe a significant change in
amplitude when a node toggles its edge, the change in
amplitude must be much higher than the background.
However, the background is high when many other n-
odes are transmitting, and changes continually depend-
ing on the state of the tags. As a result, edges are not
always clearly visible in this signal.
Our idea is to look at the IQ vector differential caused

by the edge. Since the received signal from concurrent
transmissions is a linear combination of individual sig-
nals (to first approximation), we can express the re-
ceived backscatter signal at time t from N concurrent
transmitters as:

S(t) =
N∑

j=1

Sj
I (t) + iSj

Q(t) (2)

where I and Q are the in-phase and quadrature chan-
nels respectively. To extract a signal edge, we look at
the differential between the IQ signal before the edge
occurs, and after the edge occurs i.e.

∆S(t) = S(t+)− S(t−) (3)

where S(t+) and S(t−) are received signal by the
reader at time t+ after the edge and t− before the edge.
Thus, by subtracting the received signal after and before
an edge, we can remove the effect of other background
nodes. Since a single instance of t+ and t− could result
in a noisy edge estimate, we use a set of points between
the previous edge to the current edge as candidates for
t+, and a set of points between the current edge and
the next edge as t−, and take the average.

3.2 Separating edges into streams
At this point, we have a sequence of edges, but we

do not know which node(s) toggled their transistors to
create the edge. Each edge could be a) the result of
a single node toggling its transistor, b) a collision re-
sulting from multiple nodes doing so at the same time,
or c) a spurious edge as a result of noise. To address
this problem, we add some additional structure to the
signal. First, the reader chops up time into shorter e-
pochs, where each epoch is initiated by the reader by
shutting off and re-starting its carrier wave. At the be-
ginning of an epoch, each node picks a random initial
offset, and begins to transmit its bits periodically at a
selected rate starting at the offset. The randomization
ensures that the collision pattern changes each epoch,
so even if edges did collide in an epoch, they are likely
to separate the next epoch. Second, we assume that
the rate selected by the sensor is not arbitrary, but it
is a multiple of a base rate (e.g. in our system, the
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base rate is 100 bps, and any multiple of that is a valid
data rate). This ensures that when nodes collide as a
result of choosing the same offset, they continue to col-
lide periodically throughout the epoch giving us more
information to separate the signals. In addition, this
assumption helps us detect if an edge is spurious, since
such an edge would not have a repeating pattern at one
of the valid rates.

Selecting fine-grained offsets One thorny problem
that we face is how a node can choose a fine-grained
offset when it only has a coarse-grained clock. Ideally,
we want edges to be finely separated in time (from the
reader’s sampling perspective), so that we can support
as much concurrency as possible. However, finely sepa-
rated edges requires a fine-grained clock at the tag that
is roughly as fast as the reader’s clock, which defeats
the very purpose of LF-Backscatter.
In keeping with the laissez-faire spirit, we just let tags

start transmission the moment they see that the reader
has turned on its carrier wave to signal the beginning
of an epoch. Why would this work? To understand,
let us look at the receive circuit of a backscatter tag.
The energy from the incoming signal charges up a tiny
receive capacitor, which in turn triggers a comparator
when the voltage reaches a threshold that suggests that
the carrier is turned on. There are three sources of ran-
domness that affect exactly when the comparator fires:
a) the energy received by the tag from the incoming
signal, which depends on placement and orientation of
the tag, b) the charging characteristics of the capacitor
(typical capacitors have about 20% tolerance), and c)
the noise in the charging process, since in practice the
charging curve has small oscillations and isn’t perfectly
smooth as shown in textbook drawings. The end re-
sult is that tags exhibit natural variations in when they
start their transfer, which gives sufficient temporal sep-
aration across edges.
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Figure 4: The capacitor charging curve changes
depending on incoming energy, which in turn
affects the time when the comparator fires to
begin transmission.

Decoding edges Another question is how to robust-
ly detect the presence of a stream and filter noise. To
address this, the reader leverages the repeated pattern
of edges, also referred to as an eye pattern [21]. Here,
the analog value of a signal sample s(t) is added to the
analog signal sample that is T seconds ahead, s(t+ T ),
where T corresponds to the inverse of the highest bit
rate. For example, T is 10µs for a 100kbps maximum
bit rate. The eye pattern is determined for each possi-
ble offset, and used to detect the presence of a stream.
The benefit of such folding is that it helps smooth out
noise. Although each edge might have different strength
S + σ, the noise σ will be averaged as a result of repet-
itive folding. Therefore, the peaks of eye pattern help
explicitly identify edges that belongs to a same stream.

3.3 IQ Cluster-based Collision Detection
Once the streams are identified, the next step is to

identify whether it is the result of a collision. To detect
collided edges, we use the fact that the possible values
of the edge differential vector depends on the number of
nodes that are colliding at that position. Lets consider
the example in Figure 3, and call the two transmitter-
s as E1 and E2. For each node, edge differentials can
be in one of three states (rising, falling, and constan-
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Table 1: Single node data recovery. The first bit
is the anchor, which helps disambiguate clusters.

Sent Bits 1 0 0 0 0 1 1 0 1 0 · · ·
Received Edges ↓ - - - ↑ - ↓ ↑ ↓ · · ·
Decoded Bits 1 0 0 0 0 1 1 0 1 0

t). In the top pipeline, time-domain separation unlinks
the two streams, so each of them is clustered separately
leading to three clusters on the IQ plot. On the bottom,
we only have a single combined stream since the edges
collide at the same time, so we now have nine states for
the overlapped signal edge (each edge has three state, so
there are nine combinations). Thus, when there are k n-
odes colliding, we expect 3k clusters to be present. Giv-
en this intuition, we can detect if collisions are present
by performing k-means clustering and determining the
best fit in terms of number of clusters. If three clus-
ters is not a good fit, then a collision is likely to have
occurred.
We emphasize that it is not important to achieve

highly scalable cluster separation since edges are finely
localized in time, and a very small number of collisions
are expected for a stream. Consider a simple case where
nodes transmit at 100 Kbps, which is on the higher end
of what we might expect in a real deployment. We use
the same parameters as our experimental setup i.e. 16
nodes, 25Msps sampling rate at reader, and 3 sample
edges. The probability of two-node collisions is 0.1890,
whereas the probability of three node collisions is on-
ly 0.0181 making it far less likely. If the bit rate were
lower, say 10 Kbps, the probability of three (or higher)
node collisions is less than 0.0022 even when 200 nodes
transmit concurrently.

3.4 Separating Collided Signals
While the different clusters can be separated using k-

means, we need to map from cluster to the bit that each
node transmits. Lets consider the case when a single n-
ode is transmitting, where an edge can have three states
(rising, falling, constant). The cluster for the constant
edge is located at the origin, so it is easy to determine.
But the clusters for the other two edge states depend
on the vector direction, which in turn depend on node
placement, orientation, and other factors. The cluster
to edge association is even harder when two nodes col-
lide, since there are many more possibilities.
Let us first look at the case when only one node is

present. Here, determining the sequence of bits only
needs an anchor to tell us which cluster is +1. Since
every epoch starts with a header from each tag, we em-
bed a single anchor bit at a known location, which helps
us disambiguate between the rising vs falling edge clus-
ters. Once the cluster labels are known, the rest of the
bits can be easily decoded. The process is shown in
Table 1 where the first bit is an anchor with value one.
Lets turn to the case where two nodes collide. Af-

ter correct classification, we have the centroid of nine
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Figure 5: Nine clusters formed by two colliding
edges. The clusters are linear combinations of
the complex vectors corresponding to the edges.

clusters C1, C2, ..., C9 where each centroid Ci maps to
one of the nine pairs of states. Therefore, each centroid
can be presented as a linear combination of signal edge
vectors and direction coefficients as shown below:

a1e1 + b1e2 = C1

a2e1 + b2e2 = C2

...

a9e1 + b9e2 = C9

(4)

where ai and bi indicate the direction of signal edges
generated by these two devices (ai, bi ∈ {−1, 0, 1}), and
e1 and e2 are the complex values corresponding to the
edge differential. To associate each centroid with cor-
responding signal edges, we need to solve the above e-
quations and obtain a1, a2, ..., a9, b1, b2, ..., b9, e1, and
e2.
This problem is difficult to solve when a large number

of nodes collide, but it is easily solved when we just have
nine clusters. The cluster centered at the origin is easily
decoded as constant from both nodes. From Figure 5,
we see that the centroids of the remaining eight clusters
form a parallelogram where the clusters in the mod-
points of the edges correspond to the cases where only
one of the edges is activated and and the other edge is
a constant. Thus, if we identify the mid-points, we can
find e1 and e2, and separate the edges into two streams.
To identify the mid-points, we identify which groups
of three cluster centroids are co-linear, which tells us
which are the edge lines. We then select the mid-points
of these co-linear centroids to identify the mid-point
clusters, and thereby identify e1 and e2.
Note that one major advantage of our method in that

it does not require estimation of the channel between
the tag and reader. Our only assumption is that that
channel coefficients are relatively stable during an e-
poch, which is reasonable since each epoch is a very
short duration.

3.5 Bit Error Correction
The above process assumes that there are no missed

edges or erroneously detected edges. If so, this can
throw off the subsequent decoding, and cause errors in
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�Bit 0             �Bit 1             Bit 2              Bit 3             �Bit 4     !

↑!
↓
-+ 
-- 

Output:   �1                   0                   1                    0                   0         !

Figure 6: Viterbi decoder that encodes edge
constraints. ↑ stands for a positive edge, and
↓ stands for a negative edge. −+ means no edge
found but its previous edge is a positive one and
−− means its previous edge is negative

the rest of the sequence. While parity bits and error
correction codes are commonly employed for error de-
tection and correction, we would like to avoid having
to compute anything at all on the tag-side since that
increases complexity.
The fact that we are using signal edges to decode

the sequence of ones and zeros transmitted by a tag
suggests a possible solution. We simply leverage the
fact that certain sequences are just not possible. For
example, a rising edge followed by a rising edge is ob-
viously an error. To correct for such errors, we use a
Viterbi decoder with four states: ↑ (positive edge), ↓
(negative edge), −+ (no edge found but previous edge
is a positive one) and −− (no edge but previous edge is
negative). We learn state transition probabilities, and
calculate the emission probability by fitting the IQ val-
ues that are empirically observed to a two dimensional
normal distribution: (Vi, Vq) ∼ N(µi, µq,σi,σq, r). We
then use a Viterbi decoder to identify the most likely
sequence of bits corresponding to the received sequence
of edges.
Figure 6 shows an example where the bold line shows

the decoded sequence of bits, and the dotted lines show
alternate valid sequences. For example, if a node was
transmitting a one as the first bit, then the only possibil-
ity is to either remain in the same state or see a negative
edge (↓) following this state. The decoder leverages the
valid state transition constraints together with analog
information about the IQ vector length to correct errors
that occur in the sequence of edges.

3.6 Tag Complexity
The steps that we have described so far require vir-

tually no tag-side logic. We now describe two additions
that could increase the complexity of tag design.

Clock: Since LF-Backscatter is primarily aimed at
backscatter-based sensors that use a clock for sampling
the sensor values, we can simply use the same clock for
communication. LF-Backscatter clocks out bits as and
when they are sampled and therefore does not need a
separate clock for communication unlike typical wireless
sensor platforms. However, since the decoding steps

Figure 7: Experimental setup

described above require tight timing for the signal edges
in-order for the reader to decode the signals, we would
need a clock with relatively low drift. If such a clock
is not already available on a sensor platform, it can
be added at the cost of a small increase to the overall
power budget (e.g. the NXP PCF8523 Real Time Clock
consumes 1.2µW [4]).

Reliable data transfer: The design that we have
described does not provide link-layer reliability to keep
the tags simple. If link-layer reliability is needed, an
acknowledgement mechanism can be added at the cost
of some complexity at the tag. For example, a simple
way to add reliability is for the the reader to send a
Broadcast ACK to the entire network asking them to
retransmit data for the next epoch. The benefit of this
approach is that collision patterns are different across
epochs, which can be used to decode messages. Similar-
ly, the reader might broadcast a message to reduce the
maximum bit-rate in the network to reduce collisions.
Note that stringently constrained tags can ignore these

ACK messages. Since these tags typically transmit at a
very slow rate, their transmissions are unlikely to cause
collisions, so it is sufficient to slow down the faster nodes
to reduce bit errors.

4. IMPLEMENTATION
In this section, we describe key implementation de-

tails not covered in earlier sections. We use the USRP
N210 software defined radios and UMass Moo backscat-
ter sensors for our instantiation of LF-Backscatter.

4.1 Platforms
The hardware platform is shown in figure 7.

USRP Reader LF-Backscatter is built based on the
USRP N210 software radio reader developed by [24]
with SBX RF daughterboards and Cushcraft 900 MHz
antennas [1]. The SBX daughterboard has two RF in-
terfaces where one (TX/RX) of them can be configured
for either transmission or reception and the other (RX2)
can only be configured as reception. The sampling rate
at the reception antenna is set as 25MHz.

Backscatter node The UMass Moo is a backscat-
ter node that operates in the 902MHz ∼ 928MHz band.
Our decoding method can tolerate roughly 200ppm of
clock drift, so we need to use an external low-drift crys-
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tal oscillator rather than the built-in internal DCO on
the Moo which has a typical drift of 40,000ppm (4%
of the DCO clock speed [2]). The Moo has a low drift
32kHz external oscillator which we can use for decod-
ing, but we replace this with a 8MHz oscillator to be
able to experiment with higher speeds [3]. The clock we
use has a typical drift of 150ppm.

4.2 Baselines
We compare LF-Backscatter with the following two

baseline schemes:

• TDMA: We use a stripped down version of EPC
Gen 2 where we remove a significant fraction of
its protocol overhead (which is often substantial
[10]), and keep the essential elements for TDMA
operation. Following the EPC Gen 2 standard, we
assume that slots are 96 bits long, and the bitrate
is 100 kbps.

• Buzz: We also compare LF-Backscatter with Buz-
z [22]. Based on details in the paper, we reproduce
the Buzz implementation including the tag-side
code on the UMass Moo and reader-side decoding
algorithms. The results from our implementation
are comparable to numbers shown in [22], so we
believe this is a faithful reproduction of their pro-
tocol. As with the TDMA scheme, each sensor
transmits a 96-bit message each time at a bit rate
of 100 kbps.

5. EVALUATION
Our goal in this evaluation is to demonstrate that

LF-Backscatter can provide significant improvements in
performance across three axes — throughput, latency,
and energy.

5.1 Concurrent Transmission Goodput
Our first set of experiments looks at the benefits of

LF-Backscatter in terms of throughout. We deploy six-
teen backscatter tags at different locations roughly two
meters from a backscatter reader, and select subsets of
these tags for different experiments.

Aggregate throughput In the first experiment, we
fix the bitrate of all the nodes to 100Kbps (since this
rate can support most high-rate sensors), and increase
the number of nodes from 4 to 16.
Figure 8 compares the aggregate throughput achieved

by different schemes — LF-Backscatter achieves very
close to the maximum possible throughput in all cas-
es. The aggregate throughput is marginally lower than
the maximum for the 12 and 16 node cases, but the
difference is small. The throughput benefits are huge
— when 16 nodes are present, LF-Backscatter is 16.4×
better than TDMA and 7.9× better than Buzz.

Breaking down the benefits Let us now break
down aggregate throughput by the different components
of our design to see how much each of them matters.

 0
 200
 400
 600
 800

 1000
 1200
 1400
 1600

4 8 12 16

Th
ro

ug
hp

ut
 (k

bp
s)

Number of Devices

TDMA
Buzz

LF-Backscatter

Figure 8: Comparison of throughput achieved
by TDMA, Buzz, and LF-Backscatter when the
number of nodes increases.
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Figure 9: Breakdown of each decoding module’s
contribution to LF-Backscatter’s throughput.

Figure 9 shows the breakdown — we start with an ap-
proach that uses only edge-based concurrency, then we
add IQ cluster-based collision detection and separation,
and finally we add error correction methods. We see
that each of these benefits overall throughput — edge-
based concurrency does really well by itself, but there’s
more error as the number of nodes increases.. For ex-
ample, edge-based concurrency leaves about 15.3% of
the throughput on the table for the 16 node case. Colli-
sion recovery improves throughput by about 5.6%, and
adding error correction improves it by another 7.7%.
Thus, all three design components play a crucial role in
getting throughput to be close to the maximum.

Varying bitrate We can support sixteen nodes at
100 Kbps, but how far can we push it before we are
unable to pack any more edges? Since we’re limited
in terms of number of available nodes, we instead vary
the bit-rate of the sixteen nodes, and plot the aggre-
gate throughput. Figure 10 shows that the aggregate
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Figure 10: LF-Backscatter throughput when n-
odes transmit at different bit rates.

Table 2: Separating edge collisions with IQ-
based classification.

Setting Accuracy
100 Kbps with background nodes 80.88%
100 Kbps w/o background nodes 86.89%
10 Kbps w/o background nodes 95.40%

throughput crashes after about 200 Kbps, so this gives
us an empirical upper bound on the extent of concur-
rency we can support. The crash is not surprising. Our
reader samples at 25 Mega samples/second, and tags
transmit at 250 Kbps, so we can pack 33 nodes if their
edges were stacked one after the other. Our deployment
has 16 nodes, so there is a huge number of edge collision-
s. It is also interesting to note that the IQ cluster-based
recovery and error correction are very useful as the bit-
rate increases. Indeed, they pull throughput back to a
respectable level at 250 Kbps even though practically
all edges are colliding.
The result can be viewed from two lenses. From the

perspective of wireless sensors, the result is very posi-
tive — concurrent transfer from 16 nodes at 200 Kbps is
at least an order of magnitude better than what we can
achieve from virtually all low power active radios in the
market today, at a fraction of the power consumption.
In addition, scalability to a few tens of nodes within a s-
ingle communication range is often more than sufficient
for typical sensor network or IoT deployments that cur-
rently rely on technologies like 802.15.4 or Bluetooth
Low Energy. From the perspective of RFID deploy-
ments that target detection of hundreds or thousands
of tags in a pallet, our solution is not ideal since our
scalability is limited by our ability to interleave signal
edges in the time-domain.

IQ cluster-based separation Let us take a closer
look at IQ cluster-based separation, and see under what
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Figure 11: Throughput when a mix of nodes at
different bitrates transfer concurrently. (y-axis
in logscale)

conditions it works and when it doesn’t. Intuitively, our
ability to separate depends on the relative distance be-
tween IQ vectors of the nodes that collide, which in turn
depends on the placement of the nodes. To understand
this, we place 16 nodes at different locations in front of
a reader, and choose different pairs of nodes to trans-
mit such that all their edges collide. We then try three
cases: a) the two nodes transmit at 100Kbps, and there
are 14 other nodes chattering away in the background,
b) the two nodes transmit at 100Kbps, and there are no
other tags transmitting in the background, and c) the
two nodes transmit at 10Kbps, and there is no back-
ground transmissions. The three cases cover the effect
of background as well as the effect of averaging noise
(since edge decoding is more robust when edges are less
frequent as described in §3)
Table 2 shows how well we can separate collided edges

in different cases. Our classification accuracy is above
80% in all cases, with the lowest accuracy being in the
case when there is a lot of background chatter. This
is to be expected, since more nodes in the background
increases the noise floor and results in a noisy edge d-
ifferential, which in turn impacts accuracy. Removing
background improves accuracy by 6%. Reducing the
bit-rate improves accuracy by another 8.5% because we
are able to average the edge differential over more sam-
ples (i.e. more samples before the edge and after the
edge), so this helps improve SNR.

Co-existence of slow and fast tags So far, we have
assumed that all tags are transmitting at the same rate
but one of the key benefits of LF-Backscatter is that
it can support widely different bitrates, ranging from
ultra-low power tags to high-rate tags. To evaluate this
benefit, we let two node transmit at each of the following
eight sets of bitrates starting from slow to fast — 0.5
Kbps, 1 Kbps, 2 Kbps, 5 Kbps, 10 Kbps, 50 Kbps, and
100 Kbps.
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Figure 11 shows the throughput achieved by each n-
ode. The results show that the slow nodes are not ad-
versely impacted by the fast nodes, and have a loss rate
of zero. This shows that LF-Backscatter supports suf-
ficient concurrency that it can deal with nodes with
widely varying data rates that we would typically ex-
pect from backscatter-based sensors.

5.2 Node Identification Time
While throughout is important in sensor data trans-

fer scenarios, a canonical application of backscatter is
to quickly read RFID identifiers in a shopping cart or
warehouse. The performance metric of interest in this
case is latency of reads. In general, higher throughout
must mean lower latency for reading the identifier of
tags, but one additional consideration is that we need
to read identifiers in a reliable manner.
The node identification protocol that we build on LF-

Backscatter works as follows. Each node transmits its
EPC Gen 2 identifier (96 bits + 5 bit CRC) in each
epoch with a random offset. Each tag starts at the
highest bitrate (100Kbps), and at the end of the epoch,
the reader can optionally send a command to use a lower
bitrate if it observes too many collisions.
Figure 12 shows the identification time for differen-

t number of tags in front of a reader (up to 16). We
see that the identification time is 17× lower than TD-
MA and 9.5× lower than Buzz, which means that R-
FID identification using our protocol can be consider-
ably faster than existing techniques.
While we do not have hardware to experiment with

more than 16 tags, we expect LF-Backscatter to scale
quite easily to a larger number of tags. One easy ap-
proach is to set bitrate to a lower number, say 10kbps,
and allow LF-Backscatter RFIDs to concurrently trans-
mit their ID. In this setting, we can not only support
a few hundred tags, we can also enable longer-range
operation since the hardware is simpler than passive R-
FIDs (no decoding overhead, and much less complex
circuit). We would also eliminate the achilles heel of
TDMA-based RFID identification, which is the estima-
tion of number of tags. It is well known that EPC Gen
2 has enormous overheads due to inexact cardinality es-
timation. While Buzz does not need cardinality estima-
tion either, it assumes that channel coefficients of nodes
are sufficiently distinct to separate, but this assumption
may not hold as one scales the number of nodes.

5.3 Energy efficiency and tag complexity
Our third performance metric is energy-efficiency. It

is hard to overstate the importance of energy-efficiency
for harvesting-based sensors — operating range, through-
put, latency, cost, deployability, size, and a variety of
other metrics are inexorably connected with energy. The
ability to design tags that operate at extremely low pow-
er is one of the key reasons to use LF-Backscatter.
To evaluate energy-efficiency, we first construct an

FPGA-based implementation of LF-Backscatter so that
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Figure 12: Node identification time when TD-
MA, Buzz, and LF-Backscatter are used for in-
ventorying RFID tags.

Table 3: Hardware complexity of RFID chip,
Buzz, and LF-Backscatter

Num of transistors w/o FIFO 1k FIFO
RFID chip 22704 34992

Buzz 1792 14080
LF-Backscatter 176 176

we can fully understand its hardware complexity and
measure power consumption. We implement LF-Back-
scatter and Buzz [22] in Verilog, and compare the num-
ber of transistors used by these protocols against a pub-
licly available EPC Gen 2 implementation in Verilog
[23]. All of our implementations currently support on-
ly a single bit-rate — while bit-rate adaptation can be
added to all implementations, its overhead is similar
across the three schemes, and would not affect the con-
clusions.
Table 3 shows the results. EPC Gen 2 (TDMA) and

Buzz need a packet buffer — the former to buffer sen-
sor samples between transmission slots, and the latter
to ensure that samples are not lost while bits are re-
transmitted in lock-step. This increases their complex-
ity, so we provide results with and without the packet
buffer. The results show a dramatic difference in hard-
ware complexity — LF-Backscatter requires an order of
magnitude fewer transistors than Buzz, and two orders
of magnitude fewer transistors than EPC Gen 2, vali-
dating our claim that our protocol simplifies hardware
design of tags.
Reduced hardware complexity typically implies low-

er power consumption, so lets look at the communi-
cation efficiency of the different protocol + hardware
combinations. We obtain power numbers for the dif-
ferent hardware architectures from a SPICE simulation
of our Verilog code, and we use throughputs from Fig-
ure 8 to calculate communication efficiency. Since the
power consumption of EPC Gen 2 and Buzz depend on
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the number of nodes that are transmitting, we vary the
number of nodes from one to 16 and evaluate the power
consumption for different approaches.
Figure 13 shows that LF-Backscatter is about 20×

higher than Buzz and two orders of magnitude higher
than EPC Gen 2 in terms of energy-efficiency. This ben-
efit has huge implications — a 20× reduction in power
consumption would mean roughly doubling the range
at which the tags get sufficient energy from the reader,
or alternately that 20× more data can be transmitted
at the same distance. Either way, this is a big win.

5.4 SNR: LF-Backscatter vs ASK
LF-Backscatter has several benefits as described above,

but trades off some robustness in the process since it
relies on edge detection and requires higher SNR than
ASK modulation. To evaluate the tradeoff, we com-
pare the bit-error rates of the two decoding schemes
for a single tag transmitting across many distances and
reader power levels. We focus on the low SNR regime,
which is where we might expect to observe less robust-

ness for LF-Backscatter decoding. Figure 14 shows that
there is a difference of approximately 4dB between LF-
Backscatter and ASK in terms achieving equivalent bit
error rates until the SNR reaches about 15dB, after
which the bit error rate drops to zero.
To evaluate the impact of this SNR gap on range,

lets consider the classical radar equation [19] used to
determine backscatter link budget

Pr = PtG
2
t (

λ

4πd
)4G2

tagK

where Pr is the received signal strength at the reader,
Pt is the power of transmitted signal, Gt is the gain
of transmit antenna, λ is the wavelength of received
signal, d is the distance between transmit antenna and
tag, Gtag is the gain of antenna at tag side, and K is
the modulation loss of the tag. With this equation, we
can calculate that if a tag has a working range of 10ft
with ASK, it will have an equivalent range of 8.1ft with
LF-Backscatter. Similarity, LF-Backscatter will have a
working range of 23.7ft if a tag works 30ft with ASK.
Thus, we expect LF-Backscatter to be effective for most
of the working range of ASK modulation but at the
higher end of the operating range, we need to switch
from LF-Backscatter to ASK to improve robustness.

6. RELATED WORK
We discuss related work that we have not touched

upon in the previous sections.

Concurrent transfer with active radios Much re-
cent work has explored the problem of concurrent wire-
less communication with active radios such as WiFi [11,
9], typically using Successive Interference Cancelation
(SIC). However, SIC requires significant difference in
the SNR level of the collided signals, hence it only ap-
plies to limited scenarios [18]. Methods like ZigZag [9]
may, however, be useful if we use reliable transfer and
nodes repeat the same bits in different epochs.

Alternate modulation schemes While backscatter
is predominantly based on ASK modulation which is
the basis for our work, other methods like Frequency
Shift Keying (FSK) or Quadrature Amplitude Modula-
tion (QAM) are also possible [20]. FSK is less efficien-
t than ASK since it requires multiple edge transitions
for each bit, so the energy efficiency and throughput
of LF-Backscatter is certainly better. QAM could have
similar throughput but it is certain to involve consider-
ably more complex hardware at the tag (consequently
more power), as well as more hardware complexity at
the reader (consequently more expensive).

Fit with other backscatter systems There have
been many exciting new ideas for backscatter-based ap-
plications including backscatter of TV or FM signals for
credit card transactions [16], gesture recognition using
backscatter [14], backscatter with WiFi routers [13], etc.
While mileage may vary depending on extent of concur-
rency that is needed, several of these cases can leverage
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the ideas in LF-Backscatter to reduce tag complexity,
increase throughput, improve energy-efficiency, etc.

EPC Gen 2 Much work on backscatter has focused
on addressing issues with EPC Gen 2 (e.g. [10, 24, 25,
27]). While EPC Gen 2 is here to stay, we think it
shouldn’t limit us from exploring new designs. Indeed,
LF-Backscatter allows considerably more efficient tag
designs, and lower latencies than EPC Gen 2, so we
think there is much to be gained from this exploration.

7. CONCLUSION
In this paper, we introduce LF-Backscatter, a nov-

el asymmetric communication paradigm for backscatter
that pushes all the complexity to the reader, and enables
tags to communicate virtually without restriction. We
think that this is an important design point in backscat-
ter communication, and the laissez-faire approach at
the tag has significant ramifications in terms of de-
signing lower power and perhaps lower cost backscat-
ter sensors, while simultaneously being able to support
high-speed concurrent backscatter communication. Our
experimental results show benefits in many way that
backscatter may be used, whether for high-throughput
transfer, low-latency reads, or highly energy-efficient
tags, typically by an order of magnitude or more over
existing schemes.
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