


end-to-end latency, and forces tight synchronization require-
ments between hosts and the switch. This can increase the
overall tra�c latency and jitter of widely used applications
(i.e., VOIP, multiuser gaming etc.) and decrease the user
quality of experience. As we move towards faster switching
times, memory requirements diminish. Under the same con-
figuration, a nanosecond switching time requires only kilo-
bytes of bu↵ering memory. This enables bu↵ering packets
directly in the ToR switch (see Figure 1, Fast Scheduling)
and would remove issues relating to synchronization between
the host and switch, thereby decreasing design complexity.

The scheduler is a key element that determines the perfor-
mance of the data center network. With the availability of
fast optical switches [3, 1] and increasing network demands,
rapid scheduling is a necessity and not an option. Compared
to its software counterparts, hardware based schedulers can
match the speeds of fast optical switches and can be quick
in responding to the dynamically varying network demand.
This is inherent due to their hardware design: allowing quick
demand estimation, fast schedule computation and rapid
communication of computed schedules to the switch.

3. PROPOSED DESIGN
In the previous section we motivated the need for hard-

ware based schedulers. Hardware may not be fast by default,
but with proper implementation fast, high performance op-
eration can be achieved. To this aim, we argue that the
path towards the design and implementation of an opti-
mal hardware scheduler requires a flexible framework for
rapid prototyping, exploration and evaluation of novel hy-
brid schedulers. We aim to prototype the framework us-
ing a reconfigurable platform, NetFPGA-SUME [6]. The
NetFPGA-SUME platform was designed for data center re-
search, and enables the evaluation of new designs under real
tra�c workloads and with comparable performance.

We partition our design into processing logic, switching
logic and scheduling logic as shown in Figure 2. The pro-
cessing logic and switching logic are part of the infrastruc-
ture that is constant (yet configurable), and the users imple-
ment novel design in the scheduling logic module. Incoming
packets from hosts H1, H2, .., Hn are sent to the process-
ing logic. There, packets are classified into flows based on
configurable look-up rules and places them into their respec-
tive Virtual Ouput Queue (VOQ). As the status of a VOQ
changes, the subsystem generates scheduling requests and
transmits packets upon receiving transmission grants from
the scheduling logic. The scheduling logic processes the in-
coming requests, estimates the demand matrix, and runs
the scheduling algorithm, generating corresponding trans-
mission grants. Before providing a grant to the processing
logic, the scheduler sends the grant matrix to the switching
logic to configure the circuits in the OCS to match the grant
matrix. Once the grant message is received by the process-
ing logic, it dequeues packets from the respective VOQ and
sends them to the OCS (that has already been configured
according to the grant matrix) to be delivered to the re-
spective destination. Based on the scheduling mechanism,
residual tra�c can be sent through the EPS. The scheme
allows for multiple VOQs to be served at once, matching
the port dimensions of the switching logic.

The design contains network interfaces, memory interfaces
and various logical elements, omitted from the discussion
for clarity. Individual partitions can be designed as sep-

Figure 2: Proposed implementation

arate entities and then integrated to realize a setup that
emulates or uses commodity network devices. The resulting
testbed enables us to explore scheduling architectures for hy-
brid switching, hybrid topologies for data center networks,
synchronization issues, scalability and latency requirements
in heterogeneous networks etc. It also allows to detect and
analyse transient e↵ects that may not be visible under sim-
ulation environments. The proposed architecture has the
advantage of supporting both centralized and distributed
implementations. A large testbed can be assembled, using
tens of processing elements, a centralized scheduling entity
and a commercial OCS. This implementation also allows to
explore SDN practices over the hybrid network.

4. CONCLUSION
This paper motivates the need for hardware based sched-

ulers in hybrid switches in order to meet emerging data cen-
ter requirements. We have shown the main drawbacks that
arise when using software based schedulers. We argue that
the first step to achieve an optimal hybrid switch scheduler
is to have a framework for rapid prototyping and assessment
of new hardware-based scheduling algorithms. Finally, we
show the architecture of the proposed framework, serving as
an enabler for new scheduling algorithms.

5. ACKNOWLEDGEMENTS
This project is supported by the EPSRC INTERNET

Project EP/H040536/1.

6. REFERENCES
[1] Epiphotonics. Nano-second speed plzt switch.

http://www.epiphotonics.com/products3.htm.
Accessed: 2015-05-08.

[2] N. Farrington et al. Helios: A hybrid electrical/optical
switch architecture for modular data centers. In
SIGCOMM. ACM, 2010.

[3] H. Liu et al. Circuit switching under the radar with
reactor. In NSDI. USENIX, 2014.

[4] C. Ra↵aelli et al. Evaluation of packet scheduling in
hybrid optical/electrical switch. Photonic Network
Communications, 2012.

[5] G. Wang et al. c-through: part-time optics in data
centers. SIGCOMM CCR, 2010.

[6] N. Zilberman et al. NetFPGA SUME: Toward 100
Gbps as Research Commodity. Micro, 2014.

352




