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Figure 6: Presto incurs 6% CPU overhead on average.

cells between the first packet and last packet of each flowcell.
A value of zero means there is no reordering and larger val-
ues mean more reordering. The figure shows Presto’s GRO
can completely mask reordering while official GRO incurs
significant reordering. As shown in Section 2, reordering
can also cause smaller segments to be pushed up the net-
working stack, causing significant processing overhead. Fig-
ure S5b shows the received TCP segment size distribution.
Presto’s GRO pushes up large segments, while the official
GRO pushes up many small segments. The average TCP
throughputs in official GRO and Presto GRO are 4.6 Gbps
(with 86% CPU utilization) and 9.3 Gbps (with 69% CPU
utilization), respectively. Despite the fact that official GRO
only obtains about half the throughput of Presto’s GRO, it
still incurs more than 24% higher CPU overhead. There-
fore, an effective scheme must deal with both reordering and
small segment overhead.

Presto Imposes Limited CPU Overhead We investigate
Presto’s CPU usage by running the stride workload on a 2-
tier Clos network as shown in Figure 3. For comparison,
official GRO is run with the stride workload using a non-
blocking switch (so there is no reordering). Note both of-
ficial GRO and Presto GRO can achieve 9.3 Gbps. The re-
ceiver CPU usage is sampled every 2 seconds over a 400
second interval, and the time-series is shown in Figure 6.
On average, Presto GRO only increases CPU usage by 6%
compared with the official GRO. The minimal CPU over-
head comes from Presto’s careful design and implementa-
tion. At the sender, Presto needs just two memcpy opera-
tions (1 for shadow MAC rewriting, 1 for flowcell ID encod-
ing). At the receiver, Presto needs one memcpy to rewrite
the shadow MAC back to the real MAC and also incurs slight
overhead because multiple segments are now kept per flow.
The overhead of the latter is reduced because these segments
are largely kept in reverse sorted order, which means merge
on an incoming packet is usually O(1). The insertion sort
is done at the beginning of each f1ush event over a small
number of mostly in-order segments, which amortizes over-
head because it is called infrequently compared to merge.

Presto Scales to Multiple Paths We analyze Presto’s abil-
ity to scale in the number of paths by setting the number of
flows (host pairs) equal to the number of available paths in
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We denote the non-blocking case as Optimal.
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the topology shown in Figure 4a. The number of paths is
varied from 2 to 8, and Presto always load-balances over all
available paths. Figure 7 shows Presto’s throughput closely
tracks Optimal. ECMP (and MPTCP) suffer from lower
throughput when flows (or subflows) are hashed to the same
path. Hashing on the same path leads to congestion and thus
increased latency, as shown in Figure 8. Because this topol-
ogy is non-blocking and Presto load-balances in a near op-
timal fashion, Presto’s latency is near Optimal. Packet drop
rates are presented in Figure 9a and show Presto and Optimal
have no loss. MPTCP has higher loss because of its bursty
nature [4] and its aggression in the face of loss: when a sin-
gle loss occurs, only one subflow reduces its rate. The other
schemes are more conservative because a single loss reduces
the rate of the whole flow. Finally, Figure 9b shows Presto,
Optimal and MPTCP achieve almost perfect fairness.

Presto Handles Congestion Gracefully Presto’s ability to
handle congestion is analyzed by fixing the number of spine
and leaf switches to 2 and varying the number of flows (host
pairs) from 2 to 8, as shown in Figure 4b. Each flow sends
as much as possible, which leads to the network being over-
subscribed by a ratio of 1 (two flows) to 4 (eight flows).
Figure 10 shows all schemes track Optimal in highly over-
subscribed environments. ECMP does poorly under moder-
ate congestion because the limited number of flows can be
hashed to the same path. Presto does no worse in terms of la-
tency (Figure 11) and loss (Figure 12a). The long tail latency
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Figure 9: (a) Loss rate and (b) Fairness index comparison in
scalability benchmark.
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for MPTCP is caused by its higher loss rates. Both Presto
and MPTCP have greatly improved fairness compared with
ECMP (Figure 12b).

Comparison to Flowlet Switching We first implemented
a flowlet load-balancing scheme in OVS that detects inac-
tivity gaps and then schedules flowlets over disjoint paths in
a round robin fashion. The receiver for flowlets uses offi-
cial GRO. Our flowlet scheme is not a direct reflection of
CONGA because (i) it is not congestion-aware and (ii) the
flowlets are determined in the software edge instead of the
networking hardware. Presto is compared to 500 s and 100
us inactivity timers in the stride workload on the 2-tier Clos
network (Figure 3). The throughput of the schemes are 9.3
Gbps (Presto), 7.6 Gbps (500 ws), and 4.3 Gbps (100 ws).
Analysis of the 100 us network traces show 13%-29% pack-
ets in the connection are reordered, which means 100 us is
not enough time to allow packets to arrive in-order at the des-
tination and thus throughput is severely impacted. Switching
flowlets with 500 p.s prevents most reordering (only 0.03%-
0.5% packets are reordered), but creates very large flowlets
(see Figure 1). This means flowlets can still suffer from col-
lisions, which can hurt throughput (note: while not shown
here, 500 ws outperforms ECMP by over 40%). Figure 13
shows the latencies. Flowlet 100 ws has low throughput and
hence lower latencies. However, since its load balancing
isn’t perfect, it can still cause increased congestion in the
tail. Flowlet 500 s also has larger tail latencies because
of more pronounced flowlet collisions. As compared to the
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Gbps, 7.6 Gbps and 9.3 Gbps respectively.

flowlet schemes, Presto decreases 99.9™" percentile latency
by 2x-3.6x.

Comparison to Local, Per-Hop Load Balancing Presto
sends flowcells in a round robin fashion over pre-configured
end-to-end paths. An alternative is to have ECMP hash on
flowcell ID and thus provide per-hop load balancing. We
compare Presto + shadow MAC with Presto + ECMP using
a stride workload on our testbed. Presto + shadow MAC’s
average throughput is 9.3 Gbps while Presto + ECMP’s is
8.9 Gbps. The round trip time CDF is shown in Figure 14.
Presto + shadow MAC gives better latency performance com-
pared with Presto + ECMP. The performance difference comes
from the fact that Presto + shadow MAC provides better fine-
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grained flowcell load balancing because randomization in
per-hop multipathing can lead to corner cases where a large
fraction of flowcells get sent to the same link over a small
timescale by multiple flows. This transient congestion can
lead to increased buffer occupancy and higher delays.

6. EVALUATION

In this section, we analyze the performance of Presto for

(1) synthetic workloads, (ii) trace-driven workloads, (iii) work-

loads containing north-south cross traffic, and (iv) failures.
All tests are run on the topology in Figure 3.

Synthetic Workloads Figure 15 shows the average through-
puts of elephant flows in the shuffle, random, stride and ran-
dom bijection workloads. Presto’s throughput is within 1-
4% of Optimal over all workloads. For the shuffle workload,
ECMP, MPTCP, Presto and Optimal show similar results be-
cause the throughput is mainly bottlenecked at the receiver.
In the non-shuffle workloads, Presto improves upon ECMP
by 38-72% and improves upon MPTCP by 17-28%.

Figure 16 shows a CDF of the mice flow completion time
(FCT) for each workload. The stride and random bijection
workloads are non-blocking, and hence the latency of Presto
closely tracks Optimal: the 99.9™" percentile FCT for Presto
is within 350 us for these workloads. MPTCP and ECMP
suffer from congestion, and therefore the tail FCT is much
worse than Presto: ECMP’s 99.9™ percentile FCT is over
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Percentile | ECMP | Optimal | Presto
50% 1.0 —-12% -9%
90% 1.0 -34% | —32%
99% 1.0 —63% | —56%

99.9% 1.0 —61% | —60%

Table 1: Mice (<100KB) FCT in trace-driven work-
load [33]. Negative numbers imply shorter FCT.

7.5x worse (~11ms) and MPTCP experiences timeout (be-
cause of higher loss rates and the fact that small sub-flow
window sizes from small flows can increase the chances of
timeout [53]). We used the Linux default timeout (200 ms)
and trimmed graphs for clarity. The difference in the random
and shuffle workloads is less pronounced (we omit random
due to space constraints). In these workloads elephant flows
can collide on the last-hop output port, and therefore mice
FCT is mainly determined by queuing latency. In shuffle, the
99.9™" percentile FCT for ECMP, Presto and Optimal are all
within 10% (MPTCP again experiences TCP timeout) and in
random, the 99.9h percentile FCT of Presto is within 25%
of Optimal while ECMP’s is 32% worse than Presto.

Trace-driven Workload We evaluate Presto using a trace-
driven workload based on traffic patterns measured in [33].
Each server establishes a long-lived TCP connection with
every other server in the testbed. Then each server contin-
uously samples flow sizes and inter-arrival times and each
time sends to a random receiver that is not in the same rack.
We scale the flow size distribution by a factor of 10 to em-
ulate a heavier workload. Mice flows are defined as flows
that are less than 100 KB in size, and elephant flows are de-
fined as flows that are greater than 1 MB. The mice FCT,
normalized to ECMP, is shown in Table 1. Compared with
ECMP, Presto has similar performance at the S0 percentile
but reduces the 99™ and 99.9™" percentile FCT by 56% and
60%, respectively. Note MPTCP is omitted because its per-
formance was quite unstable in workloads featuring a large
number of small flows. The average elephant throughput
(not shown) for Presto tracks Optimal (within 2%), and im-
proves upon ECMP by over 10%.

Percentile | ECMP | Optimal | Presto MPTCP
50% 1.0 —34% | —20% —12%
90% 1.0 —83% | —79% —73%
99% 1.0 —89% | —86% —73%

99.9% 1.0 —91% | —87% | TIMEOUT

Table 2: FCT comparison (normalized to ECMP) with
ECMP load balanced north-south traffic. Optimal means all
the hosts are attached to a single switch.

Impact of North-South Cross Traffic Presto load balances
on "east-west" traffic in the datacenter, i.e., traffic originat-
ing and ending at servers in the datacenter. In a real data-
center environment "north-south" traffic (i.e., traffic with an
endpoint outside the datacenter) must also be considered. To
study the impact of north-south traffic on Presto, we attach
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an additional server to each spine switch in our testbed to
emulate remote users. The 16 servers establish a long-lived
TCP connection with each remote user. Next, each server
starts a flow to a random remote user every 1 millisecond.
This emulates the behavior of using ECMP to load balance
north-south traffic. The flow sizes for north-south traffic are
based on the distribution measurement in [29]. The through-
put to remote users is limited to 100Mbps to emulate the
limitation of an Internet WAN. Along with the north-south
flows, a stride workload is started to emulate the east-west
traffic. The east-west mice FCT is shown in Table 2 (normal-
ized to ECMP). ECMP, MPTCP, Presto, and Optimal’s av-
erage throughput is 5.7, 7.4, 8.2, and 8.9Gbps respectively.
The experiment shows Presto can gracefully co-exist with
north-south cross traffic in the datacenter.

Impact of Link Failure Finally, we study the impact of link
failure. Figure 17 compares the throughputs of Presto when
the link between spine switch S1 and leaf switch L1 goes
down. Three stages are defined: symmetry (the link is up),
failover (hardware fast-failover moves traffic from S1 to S2),
and weighted (the controller learns of the failure and prunes
the tree with the bad link). Workload LL1->L4 is when each
node connected to L1 sends to one node in L4 (L4—>L1 is
the opposite). Despite the asymmetry in the topology, Presto
still achieves reasonable average throughput at each stage.
Figure 18 shows the round trip time of each stage in a ran-
dom bijection workload. Due to the fact that the network
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is no longer non-blocking after the link failure, failover and
weighted multipathing stages have larger round trip time.

7. RELATED WORK

We summarize the related work into three categories: dat-
acenter traffic load balancing, reducing tail latency and han-
dling packet reordering.

Load Balancing in Datacenters MPTCP [53, 61] is a
transport protocol that uses subflows to transmit over mul-
tiple paths. CONGA [4] and Juniper VCF [28] both em-
ploy congestion-aware flowlet switching [58] on specialized
switch chipsets to load balance the network. RPS [22] and
DRB [17] evaluate per-packet load balancing on symmetric
1 Gbps networks at the switch and end-host, respectively.
The CPU load and feasibility of end-host-based per-packet
load balancing for 10+ Gbps networks remains open. Hed-
era [3], MicroTE [12] and Planck [54] use centralized traffic
engineering to reroute traffic based on network conditions.
FlowBender [32] reroutes flows when congestion is detected
by end-hosts and Fastpass [49] employs a centralized arbiter
to schedule path selection for each packet. As compared to
these schemes, Presto is the only one that proactively load-
balances at line rate for fast networks in a near uniform fash-
ion without requiring additional infrastructure or changes to
network hardware or transport layers. Furthermore, to the
best of our knowledge, Presto is the first work to explore



the interactions of fine-grained load balancing with built-in
segment offload capabilities used in fast networks.
Reducing Tail Latency DeTail [63] is a cross-layer net-
work stack designed to reduce the tail of flow completion
times. DCTCP [5] is a transport protocol that uses the por-
tion of marked packets by ECN to adaptively adjust sender’s

TCP’s congestion window to reduce switch buffer occupancy.

HULL [6] uses Phantom Queues and congestion notifica-
tions to cap link utilization and prevent congestion. In con-
trast, Presto is a load balancing system that naturally im-
proves the tail latencies of mice flows by uniformly spread-
ing traffic in fine-grained units. QJUMP [25] utilizes priority
levels to allow latency-sensitive flows to "jump-the-queue"
over low priority flows. PIAS [9] uses priority queues to
mimic the Shortest Job First principle to reduce FCTs. Last,
a blog post by Casado and Pettit [19] summarized four po-
tential ways to deal with elephants and mice, with one ad-
vocating to turn elephants into mice at the edge. We share
the same motivation and high-level idea and design a com-
plete system that addresses many practical challenges of us-
ing such an approach.

Handling Packet Reordering TCP performs poorly in
the face of reordering, and thus several studies design a more
robust alternative [14, 15, 64]. Presto takes the position that
reordering should be handled below TCP in the existing re-
ceive offload logic. In the lower portion of the networking
stack, SRPIC [62] sorts reordered packets in the driver af-
ter each interrupt coalescing event. While this approach can
help mitigate the impact of reordering, it does not sort pack-
ets across interrupts, have a direct impact on segment sizes,
or distinguish between loss and reordering.

8. CONCLUSION

In this paper, we present Presto: a near uniform sub-flow
distributed load balancing scheme that can near optimally
load balance the network at fast networking speeds. Our
scheme makes a few changes to the hypervisor soft-edge
(vSwitch and GRO) and does not require any modifications
to the transport layer or network hardware, making the bar
for deployment lower. Presto is explicitly designed to load
balance the network at fine granularities and deal with re-
ordering without imposing much overhead on hosts. Presto
is flexible and can also deal with failures and asymmetry. Fi-
nally, we show the performance of Presto can closely track
that of an optimal non-blocking switch, meaning elephant
throughputs remain high while the tail latencies of mice flow
completion times do not grow due to congestion.
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