
Adaptive Congestion Control for Unpredictable
Cellular Networks

Yasir Zaki
NYU Abu Dhabi
Abu Dhabi, UAE

yasir.zaki@nyu.edu

Thomas Pötsch
University of Bremen
Bremen, Germany

tpoetsch@uni-bremen.de

Jay Chen
NYU Abu Dhabi
Abu Dhabi, UAE

jchen@cs.nyu.edu
Lakshminarayanan

Subramanian
NYU and CTED
New York, USA

lakshmi@cs.nyu.edu

Carmelita Görg
University of Bremen
Bremen, Germany
cg@comnets.uni-

bremen.de

ABSTRACT
Legacy congestion controls including TCP and its vari-
ants are known to perform poorly over cellular net-
works due to highly variable capacities over short time
scales, self-inflicted packet delays, and packet losses un-
related to congestion. To cope with these challenges, we
present Verus, an end-to-end congestion control proto-
col that uses delay measurements to react quickly to
the capacity changes in cellular networks without ex-
plicitly attempting to predict the cellular channel dy-
namics. The key idea of Verus is to continuously learn
a delay profile that captures the relationship between
end-to-end packet delay and outstanding window size
over short epochs and uses this relationship to incre-
ment or decrement the window size based on the ob-
served short-term packet delay variations. While the
delay-based control is primarily for congestion avoid-
ance, Verus uses standard TCP features including mul-
tiplicative decrease upon packet loss and slow start.

Through a combination of simulations, empirical eval-
uations using cellular network traces, and real-world
evaluations against standard TCP flavors and state of
the art protocols like Sprout, we show that Verus out-
performs these protocols in cellular channels. In com-
parison to TCP Cubic, Verus achieves an order of mag-
nitude (> 10x) reduction in delay over 3G and LTE net-
works while achieving comparable throughput (some-

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SIGCOMM ’15, August 17 - 21, 2015, London, United Kingdom
c© 2015 ACM. ISBN 978-1-4503-3542-3/15/08. . . $15.00

DOI: http://dx.doi.org/10.1145/2785956.2787498

times marginally higher). In comparison to Sprout,
Verus achieves up to 30% higher throughput in rapidly
changing cellular networks.

CCS Concepts
•Networks → Network protocol design; Trans-
port protocols; Network performance analysis;

Keywords
Congestion control, Cellular network, Transport proto-
col, Delay-based

1. INTRODUCTION
Cellular network channels are highly variable and users

often experience fluctuations in their radio link rates
over short time scales due to scarce radio resources mak-
ing these channels hard to predict [26, 20, 7]. TCP and
its variants are known to perform poorly over cellular
networks due to high capacity variability, self-inflicted
queuing delays, stochastic packet losses that are not
linked to congestion, and large bandwidth-delay prod-
ucts [15, 32, 33].

Three specific characteristics directly impact the un-
predictability of cellular channels. First, the state of
a cellular channel between a mobile device and a base
station undergoes several complex state transitions that
affect channel availability in short time scales [15]; this
introduces variability in the underlying channel. Sec-
ond, the frame scheduling algorithms used in cellular
networks cause burstiness in the cellular channel. Based
on real-world cellular measurements, we observe that
the typical traffic characteristics at a receiver are bursty
(even for smooth sending patterns) with variable burst
sizes and burst inter-arrival periods. Third, while prior
work has considered only self-inflicted queuing delay as
a cause for high delays [33], we find that competing

509

http://dx.doi.org/10.1145/2785956.2787498

traffic does affect end-to-end delay characteristics, espe-
cially under high contention or when the cellular chan-
nel is near saturation. Finally, device mobility has a
substantial impact on channel characteristics that fur-
ther compounds these challenges. The lack of channel
predictability has important implications on the design
of new congestion control protocols.

In this paper we present Verus, a delay-based con-
gestion control protocol that is primarily designed for
highly variable channel conditions that are hard to pre-
dict. Instead of attempting to predict the cellular chan-
nel dynamics, Verus uses cues from delay variations to
track channel conditions and quickly change its sending
window. The key idea of the Verus protocol is to remain
in constant exploration mode and continuously learn a
delay profile that captures the relationship between the
sending window size and the perceived end-to-end delay.
Using this delay profile and delay variation cues, Verus
replaces the conventional Additive Increase (AI) in TCP
with a series of increment/decrement steps to quickly
adapt to changing channel conditions. While these con-
trol steps are primarily for congestion avoidance, Verus
retains the loss-based multiplicative decrease step of
TCP to quickly respond to congestion.

We implemented and tested Verus across a variety
of environments, comparing it against Sprout and vari-
ants of TCP including Cubic, NewReno and Vegas. We
then evaluated Verus using a combination of simula-
tions, trace-based simulations, and real-world experi-
ments. In these experiments we demonstrate that Verus
achieves an interesting trade-off between the through-
put and delay characteristics of Sprout and TCP vari-
ants in cellular channels. In comparison to TCP Cubic,
Verus achieves an order of magnitude (> 10x) reduc-
tion in delay over 3G and LTE networks while achieving
comparable throughput (sometimes margin-ally higher).
In comparison to Sprout, Verus achieves higher through-
put under rapidly fluctuating channel conditions while
maintaining low delay. Finally, we show that Verus
provides good fairness properties when competing with
other protocols and that it can rapidly adapt to highly
variable channel conditions over short time scales.

2. RELATED WORK
Legacy Congestion Control Protocols
Congestion control is an extensively studied topic with
numerous variants of TCP. TCP Reno [5], TCP Tahoe
[16] and TCP NewReno [14] were among the early popu-
lar variants which are loss-based and TCP Vegas [3] was
among the earliest delay-based control protocols. Most
current operating systems leverage TCP Cubic [13] or
Compound TCP [29]. While TCP Cubic makes spe-
cific modifications to the increment function in conven-
tional AIMD-based window control, Compound TCP
maintains two congestion windows to adapt its sending
window. There are also a number of other TCP flavors
such as LEDBAT [27], TCP Nice [30], equation based

rate control [9], and Binomial congestion control [2].
None of these legacy congestion control protocols are
directly suited for cellular network conditions where the
underlying channel changes at short time scales and the
basic assumption that a link has a fixed capacity does
not hold [31]. In addition, none of these TCP vari-
ants can distinguish stochastic losses that are part of
the cellular environment from losses caused by conges-
tion. Our work aims to combine ideas from conventional
loss-based control with delay-based control drawing in-
spiration from protocols like TCP Vegas.
Router-feedback-based Protocols
A common approach used in congestion control research
to make TCP functional in new network environments
(where TCP variants are not well suited) is to use router
feedback. Examples of such techniques include Explicit
Congestion Notification (ECN) [8], VCP [34], or active
queue management like RED [10], BLUE [4], CHOKe
[25], AVQ [19], CoDel [22]. The problem with these
methods is that they require modifications to interme-
diate routers which has remained a roadblock for adop-
tion. In our setting, we aim to design an end-to-end
congestion control protocol for cellular networks with
no middle-box support or router feedback.
Recent Congestion Control Proposals
TCP has remained the gold standard for many years,
but there have been several recent publications on new
congestion control protocols for various environments.
Sprout [33], for example, is a recent protocol specifically
designed for the context of cellular networks. Sprout
specifically focused on the problem of reducing self-
inflicted delay that affects TCP and its variants under
varying channel conditions. Sprout shows a significant
reduction in the end-to-end delay experienced by flows
in cellular networks while maintaining good throughput
characteristics. We compare our work against Sprout
later in this paper. Remy [32] focuses on the prob-
lem of machine generated automated congestion control
algorithms where a machine can be trained offline to
learn congestion control schemes. The protocol designer
specifies the desired targets of the network and Remy
uses prior knowledge of the network to parametrize the
protocol generation. Sivaraman et. al. [28] looked at
the learnability of congestion control under imperfect
knowledge of the network through an experimental study
leveraging Remy as a design tool.

Another recent congestion control protocol is Data
Center TCP (DCTCP) [1] that leverages ECN feed-
back to address several network impairments of TCP
within data center networks. Recursive Cautious Con-
gestion Control (RC3) [21] shows that the initial small
window of TCP during slow start often wastes several
RTTs until the flow fully utilizes the available link band-
width. RC3 uses several levels of lower priority services
to achieve nearly optimal throughputs. Performance-
oriented Congestion Control (PCC) proposes to empir-
ically observe and adopt actions that result in high per-
formance, but PCC’s adaptation to “rapidly” changing

510

networks is on the order of seconds and does not con-
sider unpredictable fluctuations on the order of millisec-
onds that occur in cellular networks [6].
Cellular Performance
Several measurement studies have examined TCP per-
formance problems in cellular networks. Cellular net-
works tend to over-dimension their buffers by using large
buffers at base stations to smooth the overall flow of
traffic. As a result, conventional congestion control
protocols result in “buffer-bloats” [12] and multi-second
delays. Jiang et. al. [18] have shown the severity of
bufferbloats through extensive measurements done on
3G and LTE commercial networks. The authors of [23]
run long-term measurements to investigate the end-to-
end performance of mobile devices within and across a
wide range of carriers (i.e., 100), using 11 cellular net-
work access technologies. Their results show that there
are significant performance differences across carriers,
access technologies, geographic regions and time. Zaki
et. al. [35] conclude similar observations on cellular net-
works in developing regions as well as developed regions.
Huang et. al. [15] studied the effect of network protocols
on 3G and LTE networks by means of active and passive
measurements. They discovered that TCP connections
over LTE have various inefficiencies such as slow start.
In comparison to 3G networks, LTE shows lower delays
while many TCP connections (∼52%) under-utilize the
available bandwidth of LTE.

3. CHANNEL UNPREDICTABILITY
The physical properties of radio propagation such as

path-loss and slow-fading eventually cause changes in
link performance despite mitigation techniques. As a re-
sult, cellular channels fluctuate rapidly over short time
scales (milliseconds) and change more dramatically over
slightly longer time scales (seconds). The inherent un-
predictability of radio propagation along with the com-
plex interactions between cellular networking compo-
nents makes it difficult for simple channel prediction
models to track channel variations and thus they moti-
vate adaptive exploration protocols like Verus.

We present results from several experiments on com-
mercial 3G/UMTS and LTE networks to highlight these
issues. We make three specific observations:
• Burst scheduling: Typical traffic characteris-

tics observed at a receiver are highly bursty with
variable burst sizes and burst inter-arrival periods.
Mobility further amplifies these characteristics.
• Competing traffic: When two or more flows con-

tend for radio resources and their sending rates
approach network capacity, we observe cross-flow
dependencies.
• Channel unpredictability: Standard prediction

mechanisms even using the most recent samples
are far from capturing the bursty behavior of the
channel.

We measured cellular network performance under sev-
eral different conditions, investigating the effects of sev-
eral factors including: data rates, mobility, compet-
ing traffic, and 3G/UMTS or LTE. The measurements
were conducted on two commercial cellular networks,
Du and Etisalat1, for both downlink and uplink direc-
tion. Our measurement setup consisted of a standard
rack server and a client laptop tethered to a Sony Xpe-
ria Z1 LTE mobile phone. We implemented a measure-
ment tool that sends/receives UDP packets between the
server and client at 0.4 ms sending intervals. We per-
formed clock synchronization, tagged packets with se-
quence numbers, and included the sender timestamp to
calculate the one-way delay at the receiver.
Burst Scheduling
Packet arrivals at receivers exhibit a cellular radio sched-
uler phenomenon known as “burst scheduling”. The ra-
dio scheduler serves users at different one millisecond
Transmission Time Intervals (TTI) and the amount of
data sent during the serving TTI is determined by radio
conditions that lead to sending a burst of several pack-
ets. Figure 1 illustrates this phenomenon for one of our
LTE 10 Mbps downlink measurements.

85.05 85.10 85.15 85.20 85.25 85.30
Time (s)

30

35

40

45

50

D
el

ay
(m

s)

Figure 1: LTE 10 Mbps burst arrival time

Figure 2 summarizes our findings on burst scheduling
for the two operators on 3G and LTE. In these down-
link measurements our client was stationary and in an
urban residential area. We observe that the burst size
and inter-burst arrival time are difficult to predict and
vary widely over the course of the 5 minute trace de-
spite low contention and mobility. The LTE networks
exhibit more frequent smaller bursts. Repeating this ex-
periment while driving in the same area produces qual-
itatively similar results, but mobility causes both burst
size and inter-arrival times to vary more widely. We
make similar observations on the uplink.
Competing Traffic
A common assumption made about cellular channels
is that since the cellular scheduler maintains separate
queues for each user, competing traffic flows may not
affect each other. We perform a simple experiment to
show that two competing flows especially close to link
saturation can affect each other despite queue isolation,

1Etisalat and Du are two cellular providers in the
United Arab Emirates (UAE) and they provide LTE
coverage in most parts of the major cities.

511

103 104 105 106

Size (bytes)

10−5

10−4

10−3

10−2

10−1

100
P

D
F

Du 3G
Etisalat 3G
Du LTE
Etisalat LTE

(a) Burst size

100 101 102 103

Time (ms)

10−5

10−4

10−3

10−2

10−1

100

P
D

F

Du 3G
Etisalat 3G
Du LTE
Etisalat LTE

(b) Burst inter-arrival time

Figure 2: Probability distributions 3G/LTE downlink

especially since these flows still compete for the same ra-
dio resources. We consider two users competing at the
same cellular base station such that when both users
are active, their combined data rates are almost equal
to the 3G channel capacity. The first user is constantly
receiving at a fixed rate (1, 5, 10 Mbps) while the sec-
ond user is set to operate in ON/OFF periods of one
minute intervals receiving at 10 Mbps. Figure 3 shows
the packet delays for the first user when the second user
is ON/OFF. We observe that during the non-competing
periods the average delay is low, but when the second
user is ON the average packet delay for the second user
increases, especially when the combined data rate ap-
proaches the channel capacity.

User 1
1 Mbps

User 1
5 Mbps

User 1
10 Mbps

0

50

100

150

200

250

A
ve

ra
ge

de
la

y
(m

s) User 2 is OFF
User 2 is ON (10 Mbps)

Figure 3: Impact of competing traffic on packet delay
over a 3G downlink for User 1 when User 2 is ON/OFF

Channel Unpredictability
To demonstrate that cellular channels are non-trivial to
predict, we used simple predictors to compare the mea-
sured data with the predicted data on a 3G downlink
with one user receiving at 10 Mbps. Figure 4 is one rep-

resentative trace from our campus parking lot on a 3G
stationary downlink. We observe that even at 100 ms
windows there are dramatic fluctuations in throughput
due to burst scheduling. This variability is persistent
and more evident at smaller timescales; if we zoom in to
individual packet arrivals we observe the unpredictable
variability previously illustrated in Figure 1 and Fig-
ure 2. To demonstrate that the channel is non-trivial
to predict, we experimented with simple predictors to
compare the predicted data with actual transmissions
on 3G and LTE downlink. We found that linear predic-
tors and k-step ahead predictors fail to track the high
variations of the channel. While one could experiment
with a variety of other predictors, the main result is that
standard prediction mechanisms are far from capturing
the bursty behavior of the channel despite the use of
very recent samples.

2.0 2.2 2.4 2.6 2.8 3.0
Time (min)

0

50

100

150

200

250

T
hr

ou
gh

pu
t

(k
bp

s)

(a) 100 ms windows

2.0 2.2 2.4 2.6 2.8 3.0
Time (min)

0
10
20
30
40
50
60
70
80

T
hr

ou
gh

pu
t

(k
bp

s)

(b) 20 ms windows

Figure 4: Data received on a 3G stationary downlink at
100 ms and 20 ms window sizes

4. THE VERUS PROTOCOL
Verus is an end-to-end congestion control protocol

designed for highly variable cellular channels that was
heavily inspired by our channel observations. Since
cellular channels are highly unpredictable, instead of
attempting to predict the cellular channel dynamics,
Verus uses delay variations to learn a delay profile that
reflects the relationship between the network delay and
the amount of data that can be sent without causing
network congestion. Because contention and compet-
ing traffic impact performance, Verus takes into account
delay feedback from the network to give an indication
of contention and uses delay cues to constantly remain

512

in exploration mode rather than assume that delays are
self-inflicted. Finally, because channel fluctuations oc-
cur at different time-scales, Verus uses small ε steps to
track fast changes and delay profile updates to track
slower changes.

Verus borrows a number of features from legacy TCP
variants, such as slow start and multiplicative decrease,
but changes the way it maintains the sending window.
Legacy TCP uses additive increase and increases the
congestion window (CWMD) size by 1/CWND, i.e. in-
creasing the congestion window by one packet when it
successfully received a full window. This process can be
slow. In contrast, Verus increases/decreases the sending
window at each ε ms epoch and adapts to the chang-
ing cellular channel by rapidly increasing the sending
window when the channel conditions allows for more
packets. Similarly, Verus seeks to reduce the sending
window even before packet losses whereas TCP can only
decrease the congestion window through an aggressive
multiplicative decrease after a loss.

The main goal of Verus is to avoid congestion by
maintaining an appropriate (sliding) sending window
W over a period equal to the estimated network Round
Trip Time (RTT). Verus does this by replacing the ad-
ditive increase with a series of small ε steps to adapt
quickly to channel fluctuations. Within a sending win-
dow, Verus estimates how many packets need to be sent
to avoid congestion or packet loss over a smaller ε ms
epoch. At each epoch (in the absence of losses) Verus
either: increments or decrements W using the delay
profile as follows:

W (t+ 1) = f(d(t) + δ(t)) (1)

where, W (t + 1) is the next sending window, f is the
delay profile function with d(t) being the network delay,
and δ(t) is a delay increment or decrement value.

Verus builds a delay profile using the following four
elements:
• Delay Estimator: estimates the network RTT

using delay measurements reported from the re-
ceiver’s acknowledgments
• Delay Profiler: tracks the relationship between

delay and sending window that does not cause net-
work congestion
• Window Estimator: estimates the sending win-

dow using the estimated delay and delay profile
• Loss Handler: handles losses and adjusts the

sending window

Delay Estimator
The Delay Estimator is responsible for processing the
receiver’s acknowledgments and estimating the network
delay (estimated network RTT). It calculates the packet
round trip delay Dp,i for each packet by subtracting the
current time (i.e. ACK received time) from the packet
sent time; where p represents the packet number and i
represents the Verus epoch number.

The Delay Estimator keeps track of all received packet
delays within a Verus epoch and stores them in a vec-

tor ~Di. This vector contains all received delay values
Dp,i during that epoch. In order to track the (short-
term) channel history and to avoid abrupt changes, the
maximum delay Dmax,i received within that epoch is
weighted by an Exponential Weighted Moving Average
(EWMA) and calculated as:

Dmax,i = α ·Dmax,i−1 + (1− α) ·max(~Di)

with 0 < α ≤ 1
(2)

The difference between the averaged maximum de-
lays of the last two epochs is denoted as ∆Di and rep-
resents the increase/decrease of the maximum delay ex-
perienced by the network relative to the previous epoch:

∆Di = Dmax,i −Dmax,i−1 (3)

∆Di is passed to the Window Estimator to estimate
how much to send during the next epoch.
Delay Profiler
The creation and maintenance of the delay profile is
used to estimate the next upcoming sending window
Wi+1 for epoch i + 1. The delay profile can be repre-
sented as a graph (Figure 5) where the x and y axis
correspond to the sending window (Wi) and the packet
delay (Dp,i), respectively. In Verus, each packet p is
sent as part of a sending window Wi, i.e. number of
packets in flight. Verus keeps track of Wi for each sent
packet and thus upon receiving an acknowledgement for
packet p, the sender obtains a pair of Dp,i and Wi and
adds this data point to the delay profile.

0 20 40 60 80 100 120
Sending Window W(t) (# packets)

0

50

100

150

200

250

D
el

ay
E

st
im

at
e

D
(t

)(
m

s)

Dest,i+1

Wi+1

Figure 5: Example of Verus’ delay profile. The green
dots represent the recorded values and the red line re-
flects an interpolated delay profile curve.

Window Estimator
Verus uses the current change in the network delay ∆Di

to estimate the sending window Wi that is maintained
over the current estimated network RTT. The sending
window Wi is divided into smaller epochs with a fixed
length to react quickly to channel changes. The next
sending window estimate Wi+1 is maintained over an
average of the estimated network RTT. Figure 6 shows
the basic time framework of Verus.

513

epoch i+1

Last epoch’s standing
window Wi

Estimate Wi+1 from delay profile

Ɛ ms epoch

Si+1

Figure 6: Verus time framework

Based on the sign of ∆Di, Verus decides whether
to increase or decrease the sending window. If ∆Di

is negative, it is an indication that the network/channel
conditions are improving and thus more data can be
sent to the network. If the ∆Di is positive, the net-
work/channel conditions may be experiencing conges-
tion or negative changes and thus Verus should reduce
the data rate. Verus estimates the delay that the net-
work should have Dest,i+1 as follows:

Dest,i+1 =

Dest,i − δ2 if

Dmax,i

Dmin
> R

max[Dmin, (Dest,i − δ1)] elif ∆Di > 0

Dest,i + δ2 otherwise
(4)

whereDmin is the minimum delay experienced by Verus,
δ1 and δ2 are increment/decrement parameters, and R is
the maximum tolerable ratio between Dmax and Dmin.2

Verus then uses the delay estimate Dest,i+1 to find the
corresponding sending window Wi+1 on the delay pro-
file (see Figure 5).

At the beginning of epoch i+ 1, Verus calculates the
number of packets to send during this epoch. The num-
ber of packets to be sent within the next sending window
Wi+1 are calculated as follows:

Si+1 = max[0, (Wi+1 + 2−n
n−1 ·Wi)]

with n =
⌈
RTT
ε

⌉ (5)

where Si+1 is the number of packets to send during the
epoch, Wi+1 is the estimated sending window for the
future, Wi is the current sending window at the end
of epoch i (i.e. the sending window at the time before
making the next epoch decision), and n is the number
of epochs per estimated network RTT.
Loss Handler
If Verus detects a packet loss or timeout, the sending
window is reduced and the new Wi+1 is multiplied by a
multiplicative reduction factor as:

Wi+1 = M ·Wloss (6)

2R is used to tune the protocol trade-off between delay
and throughput. We show in the evaluation section the
effect of the value of R.

where, Wloss is the sending window in which the loss
occurred, and M is the multiplicative decrease factor.
We choose the sending window of the lost packet Wloss

because that sending window was responsible for the
packet loss.

Once a loss is identified and the sending window is
multiplicatively decreased, Verus enters a loss recovery
phase. During the loss recovery phase, the delay profile
is no longer updated. The loss recovery phase is im-
portant because Verus builds its delay profile to reflect
what could be sent without incurring network losses.
Packets that arrive after a loss would have lower buffer
delays and hence are not considered.

During the loss recovery phase and upon receiving
an acknowledgement, the sending window Wi+1 is in-
creased by 1/(Wi+1) (similar to TCP). Verus exits the
loss recovery phase once acknowledgments of packets
sent after the loss are received, i.e. if the protocol re-
ceives an acknowledgement with a sending window that
is smaller than or equal to the current sending window.
Verus also uses a timeout mechanism similar to TCP in
case all packets are lost.

5. VERUS IMPLEMENTATION
Our prototype implementation of Verus consists of

sender and receiver applications written in C++. The
sender application runs in a multi-threaded environ-
ment and uses the real time extension library librt. As
the underlying transport protocol, UDP is used to trans-
mit the generated packets. A number of implementation
details must be addressed in order to realize the Verus
protocol in practice. These include delay profile ini-
tialization and maintenance, handling of timeouts and
retransmissions, and setting of parameters.

5.1 Delay Profile Initialization and Main-
tenance

Verus relies heavily on the delay profile, which re-
flects the relationship between the network delay and
the sending window without congesting the network.
The initial creation of the delay profile is handled dur-
ing Verus’ slow start phase. Verus’ slow start is similar
to TCP’s slow start; where the sender begins by sending
a single packet towards the receiver and upon receiving
an acknowledgement the sender increments the sending
window by one, which leads to exponential growth of
the sending window.

Verus maintains a list of sent packets and stores the
sending timestamp as well as the sending window with
which the packet was sent. The sender uses this infor-
mation to calculate the packet RTT (i.e. delay) and
records a (delay, sending window) tuple. Once one of
the exit conditions for Verus slow start are met, the
sender will have a number of delay/sending window tu-
ples to build the delay profile. The delay profile is con-
structed from the stored tuples using the cubic spline
interpolation from the ALGLB library.

514

Verus’ slow start phase has two exit conditions:

• encountering a packet loss: this can be deduced
from acknowledgement sequence numbers

• the RTT delay exceeds the predefined threshold:
this threshold is set as N x minimum delay (e.g.,
N=15)

During the course of operation, the delay profile needs
to be updated and maintained over time to capture
channel changes. The delay profile is updated as follows:
for every received acknowledgement at the sender, the
delay value of the point that corresponds to the send-
ing window of the acknowledged packet is updated with
the new RTT delay. This update is performed using an
Exponentially Weighted Moving Averaging (EWMA)
function to allow the delay profile to evolve. Due to
the high computational effort of the cubic spline inter-
polation, this calculation is not performed after every
acknowledgement, but instead at certain intervals. In
Section 5.3 we discuss reasonable update intervals in
more detail.

Figure 7b illustrates how the delay profile may evolve
over time. For clarity, only every fifth interpolation is
shown and we restricted the channel trace to 200 s. The
three curves of each color correspond to the same col-
ored region shown in the throughput graph in Figure 7a.
It can be observed that the delay profile curve changes
over time with respect to the fluctuations of the chan-
nel, i.e. the smaller the available throughput is, the
steeper the delay profile becomes.

0 50 100 150 200
Time (s)

0
5

10
15
20
25
30
35

T
hr

ou
gh

pu
t

(M
bp

s)

(a) Channel trace for downlink

0 50 100 150 200
Sending Window W(t) (# packets)

0
50

100
150
200
250
300
350
400

D
el

ay
D

(t
)(

m
s)

(b) Verus delay profile evolution (excluding slow start)

Figure 7: Channel trace and the corresponding Verus
delay profile curve evolution

5.2 Timeouts and Retransmissions
Although Verus is a congestion avoidance protocol

designed to handle the fluctuating capacities of a cellu-
lar channel, packet losses are sometimes inevitable as an
intrinsic property of the cellular medium. Our current
implementation of Verus is built on top of UDP. Verus
uses sequence numbers to keep track of received packets
and their RTTs. These sequence numbers are used to
identify packet losses at the sender. To deal with packet
reordering, our implementation does the following: for
every missing sequence number Verus creates a timeout
timer of 3*delay. If the missing packet arrives before
the timer expires, no packet loss is identified; other-
wise, the sending window is multiplicatively decreased
and the missing packet is retransmitted.

5.3 Verus Parameter Settings
Verus makes use of a variety of parameters and the

selection of these parameters influences the performance
of the protocol or substantially changes the overall pro-
tocol behavior. The effects of parameter changes are
mainly reflected in throughput, delay, and fairness among
flows. In our sensitivity analysis we wanted to identify
the specific effects of parameter settings and to under-
stand their relation to common scenarios.

Our sensitivity analysis of Verus parameters were per-
formed using the OPNET network simulator. In order
to emulate real cellular network behavior in OPNET, we
collected channel traces in uplink and downlink direc-
tion from a commercial cellular network provider (Eti-
salat) and replayed these channel conditions in OPNET
to schedule flows under contention.

The setup for collecting the traces consists of four
Android smartphones (3x Samsung Galaxy S4 and 1x
Sony Xperia Z1) and one server. As the server is con-
nected via a fiber link directly to Etisalat’s backbone
network so that additional delays and unwanted back-
ground traffic are minimized. All smartphones are run-
ning a native sender and receiver application to commu-
nicate with a server located in our premises. The server
runs the same sender and receiver application. Both
endpoints, server and smartphones, send UDP packets
with an MTU size of 1400 bytes simultaneously with a
constant data rate to the other endpoint. The corre-
sponding endpoint acts as a sink and records the times-
tamp of each packet arrival. We use this bi-directional
setup to measure downlink and uplink of the channel.

As the measurement is executed on the 3G HSPA+
cellular network, the data rate for each device is set to
5 Mbps and 2.5 Mbps for downlink and uplink, respec-
tively. These data rates are close to the upper limits
of the network, but do not necessarily reflect the max-
imum capacity of the cellular network. The maximum
capacity of the channel is difficult to determine and de-
pends on many factors, e.g. cross-competing traffic, mo-
bility, and interference. We expect that by using these
data rates the channel is not over-saturated and packet
buffering is minimized under ideal channel conditions.

515

In total, we ran the measurements for seven different
scenarios to capture a variety of conditions with differ-
ent mobility properties. Each measurement was con-
ducted over five minutes and all devices were started at
the same time and in the same location. The seven sce-
narios are the following: Campus stationary, Campus
pedestrian, City stationary, City driving, Highway driv-
ing, Shopping Mall and City waterfront. The channel
traces were generated from the packet arrival timetamps
at the receiver and contain inter-arrival times between
consecutive packet arrivals. Using these channel traces,
our parameter sensitivity analysis in OPNET focused
mainly on the following parameters: epoch time (ε), the
delay profile update interval, and the delta decrement
(δ1) and delta increment (δ2).
Epoch ε
In general, cellular channels have three different effects
governing the changes, some are short-term (e.g., fast-
fading) and others are more long-term (path-loss and
slow-fading). The epoch ε determines in which inter-
vals Verus calculates the amount of packets to send
Si+1. The smaller the epoch, the faster Verus reacts to
fast-fading or other sudden channel changes. Through
extensive simulation we found that an epoch of 5 ms is
a good value. This value causes Verus to quickly ad-
just the operating point on the delay profile and adapt
to sudden short-term fluctuations. Larger values of ε
cause Verus to adjust the sending window too slowly to
respond to such fluctuations. Within a 5 ms epoch, the
cellular channel does not experience larger long-term
channel changes caused by path-loss or slow-fading ef-
fects. Instead, these effects are handled by the delay
profile update rate as described below.
Delay Profile Updates
Path-loss and slow-fading dramatically change channel
conditions, and Verus must adapt the delay profile to
match these new conditions. Feedback about channel
conditions continuously update the data in the delay
profile. Verus re-interpolates the delay profile at fixed
time intervals. Our sensitivity analysis indicates that
an update interval of 1 s shows reasonable results and
is being used in this work. Re-interpolation intervals
at higher than 1 s values start causing Verus to miss
channel changes and react slowly to slow-fading channel
changes. A much smaller update interval than 1 s is too
aggressive since path-loss and slow-fading do not occur
at such high frequency.
Delta δ1 and δ2
The deltas determine how restrictive (δ1) or aggressive
(δ2) the protocol reacts to delay changes during each
epoch. The larger the values, the stronger the effects.
We find through simulation that their range should be-
tween 1 ms ≤ δ ≤ 2 ms with the condition that δ1 ≤ δ2.
Beyond these guidelines for good Verus performance,
these parameters allow Verus behavior to be tuned to
the level of desired fairness when competing with other
protocols. For the evaluations in this paper we use val-
ues of 1 ms for δ1 and 2 ms for δ2.

6. VERUS MACRO-EVALUATION
In this section, we evaluate the two main macro-level

properties of the performance of the Verus protocol,
namely throughput and delay characteristics. We com-
pare Verus against Sprout [33], TCP Cubic, TCP New
Reno, and TCP Vegas. We take a two-pronged ap-
proach to evaluate Verus against these flavors of TCP
and Sprout: real-world and trace-driven evaluation.

In the real-world evaluation, we use mobile devices
(Samsung Galaxy S4 and Sony Experia Z1 phones) to
run the protocols on 3G and LTE networks. In this
evaluation, we are constrained by the number of devices
that we are able to simultaneously use; we also restrict
the number of flows per device.

In the trace-driven evaluation, we use multiple mo-
bile devices simultaneously connecting to 3G or LTE
networks where each device is coupled with traffic gen-
erators to generate realistic network traces of the chan-
nel under different conditions. Using the procedure de-
scribed in 5.3, we specifically generate an additional set
of traces that capture network contention and mobility
scenarios. Then we use the OPNET network simulator
to compare Verus with other TCP variants [24].3

6.1 Real-world 3G and LTE Networks
We performed this evaluation on the Etisalat net-

work, the largest cellular network operator in the UAE,
which provides both 3G and LTE cellular network ser-
vice. While Verus was running natively on the mobile
devices, TCP Verus, TCP Cubic, and Sprout were ex-
ecuted on tethered laptops. We switched the mode of
each phone to connect to the appropriate network to
test both 3G and LTE. We consider multiple flows be-
tween the devices and a server with a public IP address
at our university campus with high bandwidth and low
network delays. To emulate contention, we simultane-
ously trigger competing flows between the different de-
vices and the server. To avoid device contention issues,
we limit the number of flows per device to three. Specif-
ically, we consider the following scenarios:

1. Three phones each running three Verus flows
2. Three phones each running three Sprout flows
3. Three phones each running three Cubic flows (se-

cure copy (scp) download)
4. Three phones each running three Vegas flows (scp

download)
All experiments were performed on Etisalat’s 3G and

LTE network at fixed locations without mobility and
at the same time (late evening in a residential area).
The duration of each run was two minutes and each
experiment was repeated five times. All tests were done

3The Sprout codebase is not compatible with the OP-
NET simulator, thus we compare against Sprout only
in the real-world evaluations. Furthermore, we use the
“sendonly” implementation of Sprout to get a fair com-
parison to Verus and other protocols.

516

10−1 100

Delay (s)

0
1
2
3
4
5
6
7
8

T
hr

ou
gh

pu
t

(M
bp

s)
TCP Cubic TCP Vegas Verus (R=6) Sprout

(a) 3G throughput vs. delay

10−1 100

Delay (s)

0
1
2
3
4
5
6
7
8

T
hr

ou
gh

pu
t

(M
bp

s)

TCP Cubic TCP Vegas Verus (R=6) Sprout

(b) LTE throughput vs. delay

Figure 8: Averaged throughput and delay of Sprout,
TCP Cubic, TCP Vegas, and Verus on 3G and LTE

on the downlink and the results from each flow were
averaged for each experiment.

Figure 8 shows the average throughput and average
delay for each of the flows across all runs on 3G and
LTE. We make the following observations: The average
delay observed by Verus flows is an order of magnitude
lower than the average delay of TCP Cubic and TCP
Vegas flows. Comparing 3G and LTE, Verus marginally
outperforms TCP Cubic in terms of throughput in 3G
network conditions and compares even more favorably
in LTE networks. Also, in these scenarios Verus gen-
erally performs similar to Sprout with slightly higher
throughput and higher delay.

For Verus we repeated the experiments for differ-
ent values of the ratio R (the maximum tolerable ra-
tio between Dmax and Dmin) to show how the value
of R tunes Verus to different trade-offs between higher
throughput and lower delay. Setting the Verus R pa-
rameter to six leads to throughputs higher than Sprout,
but with slightly increased delays. Figure 9 shows the
impact of the Verus R parameter on the protocol behav-
ior. Depending on the value of R, the Verus protocol
can be tuned to achieve a trade-off between a higher
throughput or lower delay. By setting R to two, Verus
achieves lower delay compared to Sprout with slightly
lower throughput.

10−1 100

Delay (s)

0
1
2
3
4
5
6
7
8

T
hr

ou
gh

pu
t

(M
bp

s)

Verus (R=6) Verus (R=4) Verus (R=2)

(a) 3G throughput vs. delay

10−1 100

Delay (s)

0
1
2
3
4
5
6
7
8

T
hr

ou
gh

pu
t

(M
bp

s)

Verus (R=6) Verus (R=4) Verus (R=2)

(b) LTE throughput vs. delay

Figure 9: Different values of R in Verus trade-off higher
throughput and lower delay

6.2 Trace-driven Evaluation
Traffic flows over cellular channels are not perfectly

isolated and exhibit contention for radio resources. To
evaluate Verus in a contention scenario with several
competing flows, we rely on the OPNET simulator and
use channel traces to emulate real cellular network be-
havior. Following the procedure in Section 5.3, we col-
lected additional cellular channel traces to perform the
evaluations in this section. The channel traces are fed
into a traffic shaper and replayed upon packet arrival.
In general, the traffic shaper is a modified version of
a regular network router (as natively available in OP-
NET) and also implements a shared queue with Ran-
dom Early Detection (RED) [11] queue management
using the following parameters: minimum queue size
3 MBit, maximum queue size 9 MBit, and drop proba-
bility 10%.

We evaluate Verus under high contention within the
OPNET network simulator for each of these channel
traces to understand how Verus performs under differ-
ent competing traffic scenarios in terms of throughput
and delay. Additionally, our simulations show fairness
properties among the flows for the different protocols.
We show the results primarily for the downlink direc-
tion but the observations are similar for the uplink. Our
simulations are configured to run with 2, 5, 10 and 20

517

10−2 10−1

Delay (ms)

0

1

2

3

4

5
T

hr
ou

gh
pu

t
(M

bp
s) TCP Cubic

TCP NewReno
Verus (R=2)
Verus (R=4)
Verus (R=6)

(a) Campus pedestrian

10−2 10−1

Delay (ms)

0

1

2

3

4

5

T
hr

ou
gh

pu
t

(M
bp

s) TCP Cubic
TCP NewReno
Verus (R=2)
Verus (R=4)
Verus (R=6)

(b) Slow driving within the city with signals

10−2 10−1

Delay (ms)

0

1

2

3

4

5

T
hr

ou
gh

pu
t

(M
bp

s) TCP Cubic
TCP NewReno
Verus (R=2)
Verus (R=4)
Verus (R=6)

(c) Fast driving on highway

Figure 10: Delay-throughput comparison with 10 flows
for different mobility patterns

simultaneous clients for TCP Cubic, TCP NewReno,
and Verus. Both TCP scenarios are configured with
full buffer FTP traffic and default parameters accord-
ing to Linux 3.16 (TCP Cubic) and Windows 7 (TCP
NewReno) configurations. Verus is configured with the
parameters obtained in Section 5.3.

Figure 10a shows a scatter plot of the throughput of
all the individual flows of the average delay and average
throughput observed by each of the flows in a campus
pedestrian environment. Overall, we observe that Verus
with lower R ratio experiences an order of magnitude
lower delay than TCP Cubic or TCP New Reno while
the throughput of Verus is comparable to the through-
put of TCP Cubic and TCP New Reno. In all these
settings, TCP Cubic and TCP New Reno are slow to
adapt to varying channel conditions and therefore in-
cur high buffering delays while Verus quickly adapts to
channel variations and experiences much lower buffer-

ing delays. Increasing R to six, increases throughput,
but also increases delay due to additional buffering.
Mobility
Figures 10b and 10c show the same scatter plot of Verus,
TCP Cubic, and TCP New Reno flows under two other
mobility patterns. We observe that while the average
throughput remains roughly the same, mobility has an
impact on the variance of the throughput across com-
peting TCP flows. However, even with high mobility,
the variation in throughput across Verus flows is small,
which is indicative of Verus being able to quickly adapt
and achieves high levels of fairness despite mobility.
Fairness
To better quantify the fairness argument, we consider
Jain’s fairness index [17] measured as:

f(x1, x2, ..., xn) =
(
∑n

i=1 xi)
2

n ·
∑n

i=1 xi
2

(7)

where xi is the normalized throughput of the i-th user
and n is the number of clients. The fairness index al-
ways ranges from zero to one, where 1

n represents the
worst case and 1 is perfect fairness. We compute Jain’s
fairness index over windows of one second and average
these one second fairness values for the overall fairness
for each protocol for comparison. Here, we vary the
number of competing flows for each experiment between
2 to 20 flows. Here and in the following experiments,
we set Verus’ parameter R = 2 unless otherwise stated.

Scenario TCP Cubic TCP NewReno Verus
2 Users 98.1% 89.7% 94.6%
5 Users 93.5% 86.3% 87.6%
10 Users 76.2% 83.8% 90.7%
15 Users 75.2% 83.3% 86.8%
20 Users 70.1% 82.0% 78.6%

Table 1: Jain’s fairness index comparison

Table 1 shows Jain’s fairness index for all three pro-
tocols. We report the average fairness index across all
five different scenarios. Our results show that although
TCP Cubic achieves high fairness among the scenarios
with a small number of users, the fairness drops signifi-
cantly under high contention (achieving about 70% fair-
ness). In contrast, Verus shows slightly lower fairness
compared to TCP Cubic for scenarios with a low num-
ber of users, while maintaining reasonable fairness at
higher contention. TCP NewReno is almost consistent
with the fairness it achieves across all scenarios, but
achieves marginally lower fairness compared to Verus
for scenarios with low number of users.

7. VERUS MICRO-EVALUATION
While the previous section detailed a macro-evaluation

of Verus, in this section we focus on specific micro-
evaluations of Verus to describe its fairness and adap-
tation properties. All the evaluations in this section are

518

performed in a simplified network configuration consist-
ing of a dumbbell topology with three laptops connected
to an Ethernet Gigabit switch, which in turn is con-
nected to a server. The server outgoing bandwidth is
controlled through the Linux Traffic Control (tc) tool.
The tool is also used to emulate delays for each of the
clients, this is used to configure the RTT.
Rapidly Changing Networks
We wanted to measure how quickly Verus can adapt to
high channel variations. This experiment is configured
so that the network condition would change suddenly.
Every five seconds the whole network parameters, i.e.
link capacity, network RTT, and loss rate, are changed.

We have considered two variations of the experiment:
where in the first version the network link capacity var-
ied between 10 Mbps and 100 Mbps. whereas, in the
second version, the link capacity varied between 2 Mbps
and 20 Mbps. The reason behind the two versions
was because the Sprout implementation bandwidth is
capped at 18 Mbps. In both scenarios, the RTT was
varied between 10 ms and 100 ms, and the loss rate
between 0% and 1%.

0 100 200 300 400 500
Time (s)

0

20

40

60

80

100

T
hr

ou
gh

pu
t

(M
bp

s) Verus TCP Cubic TCP Vegas Sprout

(a) Scenario I

0 100 200 300 400 500
Time (s)

0

5

10

15

20

T
hr

ou
gh

pu
t

(M
bp

s) Verus Sprout

0 100 200 300 400 500
Time (s)

0

100

200

300

400

500

D
el

ay
(m

s)

Verus Sprout

(b) Scenario II

Figure 11: Rapidly changing network evaluations under
two different link capacities

Figure 11a shows the throughput over time for the
first experiment where the gray shaded area represents
the available link capacity. We observe that Verus out-
performs the other protocols and manages to adapt very
quickly to the rapid network changes. Understandably,
Sprout does not perform well because of the bandwidth
cap introduced by the Sprout implementation. Fig-
ure 11b shows the throughput and delay results of Verus
compared to Sprout with a lower link capacity varia-
tion up to 20 Mbps. Here, we observe that Sprout per-
forms better than before, but Verus still achieves higher
throughput on average than Sprout.
Newly Arriving Flows
To understand the impact of the arrival of new flows,
we consider a situation where eight competing Verus
flows share a 90 Mbps bottleneck link. The experiment
is configured so that every 30 seconds a new Verus flow
starts, thus increasing the number of competing flows
over time. Figure 12 shows the throughput of seven
Verus clients over time. During the first 30 seconds
when only one Verus flow is active, the flow is fully uti-
lizing the 90 Mbps link. We observe that Verus quickly
adapts to the arrival of new flows and also reaches good
fairness across competing Verus flows when new flows
arrive and depart.

0 50 100 150 200
Time (s)

0

20

40

60

80

100

T
hr

ou
gh

pu
t

(M
bp

s)

Verus 1
Verus 2
Verus 3
Verus 4

Verus 5
Verus 6
Verus 7

Figure 12: Verus intra-fairness among seven flows

Varying RTTs
To understand the impact of varying RTTs on Verus
flows, we consider a simple experiment where three com-
peting Verus flows with three different RTTs of 20 ms,
50 ms and 100 ms share a 60 Mbps bottleneck link.
Figure 13 shows the temporal variation in the through-
put of the different Verus flows. We observe that the
throughput of Verus flows is independent of the RTT
of the flows which is indicative that the Verus fairness
model is close to Max-Min fairness. Given that delay-
based protocols use non-linear control mechanisms, these
protocols are harder to model analytically than conven-
tional window-based protocols. We plan to develop a
model to more fully characterize the behavior of Verus
and other delay-based control protocols in future work.
Verus vs. TCP
One crucial issue when a new congestion control proto-
col is introduced is fairness to legacy TCP. We inves-
tigated how several Verus flows share an Ethernet bot-
tleneck with several other TCP Cubic flows (since TCP

519

0 50 100 150 200 250
Time (s)

0

20

40

60

80

100
T

hr
ou

gh
pu

t
(M

bp
s)

Verus 20ms
Verus 50ms
Verus 100ms

Figure 13: Verus intra-fairness with 3 different RTTs

Cubic is currently used as the standard in most TCP
installations). The experiment consisted of three Verus
and three TCP Cubic flows sharing a link capacity of
60 Mbps.

At the beginning of the experiment, every 30 seconds
one new Verus flow is added to the network. Once all
three Verus flows are present, a new TCP Cubic flow
is added to the network every 30 seconds (at time 90,
120 and 150 seconds). The throughput comparison over
time is shown in Figure 14. Our results show that Verus
shares the bottleneck capacity equally with TCP Cubic.

20 40 60 80 100 120 140 160 180
Time (s)

0
10
20
30
40
50
60
70

T
hr

ou
gh

pu
t

(M
bp

s)

Verus 1
Verus 2
Verus 3

TCP Cubic 1
TCP Cubic 2
TCP Cubic 3

Figure 14: Verus fairness vs. TCP Cubic

Effect of Verus Delay Curve
In order to evaluate the effect of the delay profile curve,
we compared two scenarios: one where the delay profile
curve would update normally every second, and the sec-
ond where Verus uses the first curve it generates without
updating it. Figure 15 shows the results of this simu-
lation for all of our five different collected traces. The
results clearly show that updating the curve has an im-
pact on performance due to the fact that the cellular
channel changes and Verus needs to update its operat-
ing point on the curve based on these changes.
Short Flows
Short flows are a dominant feature in normal network
traffic due to the nature of the commonly retrieved con-
tent. Although Verus is not specifically designed to cope
with short flows, it is naturally able to handle short con-
nections. When considering a short flow that does not
progress beyond slow start, Verus behaves like legacy
TCP due to the same slow start mechanism. After slow
start, Verus uses the recorded delay profile to adapt
quickly as it does with channel changes.

10−2 10−1

Delay (s)

0

1

2

3

4

5

T
hr

ou
gh

pu
t

(M
bp

s) Verus (R=2)
Verus (R=2) static delay profile

Figure 15: Verus with and without updating delay curve

8. CONCLUSIONS
In this paper, we presented Verus, an adaptive explo-

ration congestion control protocol that is tailored for
unpredictable cellular networks. Through continuous
exploration using delay measurements and a delay pro-
file, Verus adapts to both rapidly changing cellular con-
ditions and to competing traffic. We tested Verus under
a variety of experimental scenarios through simulation
and real-world experiments over 3G and LTE networks.
We show that in cellular networks Verus achieves higher
throughput than TCP Cubic while maintaining a dra-
matically lower end-to-end delay, particularly over LTE.
Verus also outperforms very recent congestion control
protocols for cellular networks like Sprout under rapidly
changing network conditions. In the future, we plan to
experiment with other rapid adaptation mechanisms to
theoretically characterize the behavior of Verus and de-
velop a kernel implementation of Verus.

9. ACKNOWLEDGMENTS
We would like to thank Ali Raza for his help run-

ning measurements and experiments. We would also
like to thank our shepherd Sachin Katti and the anony-
mous reviewers for their valuable feedback. We also
want to extend our gratitude to Keith Winstein for his
help with Sprout. Thomas Pötsch has been funded by
the International Graduate School for Dynamics in Lo-
gistics, University of Bremen, Germany. We thank the
the NYU Abu Dhabi Research institute and the Cen-
ter for Technology and Economic Development (CTED)
for supporting Lakshminarayanan Subramanian on this
research work.

10. REFERENCES
[1] M. Alizadeh, A. Greenberg, D. A. Maltz,

J. Padhye, P. Patel, B. Prabhakar, S. Sengupta,
and M. Sridharan. DCTCP: Efficient Packet
Transport for the Commoditized Data Center.
ACM SIGCOMM, January 2010.

[2] D. Bansal and H. Balakrishnan. Binomial
congestion control algorithms. In Proceedings of
20th Conference of the IEEE Computer and
Communications Societies. INFOCOM 2001,
Volume 2, 2001.

520

[3] L. S. Brakmo, S. W. O’Malley, and L. L. Peterson.
TCP Vegas: New techniques for congestion
detection and avoidance, volume 24. ACM, 1994.

[4] W. chang Feng, K. G. Shin, D. D. Kandlur, and
D. Saha. The BLUE active queue management
algorithms. IEEE/ACM TRANS.
NETWORKING, pages 513–528, 2002.

[5] D. Cox and L.-R. Dependence. a review.
Statistics: An Appraisal, HA David and HT
David (Eds.), The Iowa State University Press,
Ames, Iowa, pages 55–74, 1984.

[6] M. Dong, Q. Li, D. Zarchy, B. Godfrey, and
M. Schapira. PCC: Re-architecting congestion
control for consistent high performance. 12th
USENIX Symposium on Networked Systems
Design and Implementation (NSDI), 2015.

[7] T. Ekman. Prediction of Mobile Radio Channels -
Modeling and Design. PhD thesis, Signals and
Systems, Uppsala University, Sweden, 2002.

[8] S. Floyd. TCP and Explicit Congestion
Notification. SIGCOMM Comput. Commun. Rev.,
24(5), Oct. 1994.

[9] S. Floyd, M. Handley, J. Padhye, and J. Widmer.
Equation-based congestion control for unicast
applications, volume 30. ACM, 2000.

[10] S. Floyd and V. Jacobson. Random early
detection gateways for congestion avoidance.
IEEE/ACM Transactions on Networking, 1(4),
1993.

[11] S. Floyd and V. Jacobson. Random early
detection gateways for congestion avoidance.
IEEE/ACM Transactions on Networking,
1(4):397–413, 1993.

[12] J. Gettys. Bufferbloat: Dark Buffers in the
Internet. Internet Computing, IEEE, 15(3), May
2011.

[13] S. Ha, I. Rhee, and L. Xu. CUBIC: A New
TCP-friendly High-speed TCP Variant. SIGOPS
Oper. Syst. Rev., 42(5), July 2008.

[14] T. Henderson, S. Floyd, A. Gurtov, and
Y. Nishida. The NewReno modification to TCP’s
fast recovery algorithm, April 2012. RFC6582.

[15] J. Huang, F. Qian, Y. Guo, Y. Zhou, Q. Xu,
Z. M. Mao, S. Sen, and O. Spatscheck. An
in-depth study of LTE: effect of network protocol
and application behavior on performance. In
ACM SIGCOMM 2013 Conference, Hong Kong,
China, August 12-16 2013.

[16] V. Jacobson. Congestion avoidance and control.
In Symposium Proceedings on Communications
Architectures and Protocols, SIGCOMM ’88,
pages 314–329, New York, NY, USA, 1988. ACM.

[17] R. Jain. Art of Computer Systems Performance
Analysis Techniques for Experimental Design
Measurements Simulation and Modeling. John
Wiley & Sons, May 1991.

[18] H. Jiang, Y. Wang, K. Lee, and I. Rhee. Tackling
Bufferbloat in 3G/4G Networks. In Proceedings of
the ACM Conference on Internet Measurement
Conference (IMC), 2012.

[19] S. Kunniyur and R. Srikant. Analysis and Design
of an Adaptive Virtual Queue (AVQ) Algorithm
for Active Queue Management. In ACM
SIGCOMM, 2001.

[20] W. Lum Tan, F. Lam, and W. Cheong Lau. An
Empirical Study on 3G Network Capacity and
Performance. In Proceedings of the 26th IEEE
International Conference on Computer
Communications. INFOCOM 2007., May 2007.

[21] R. Mittal, J. Sherry, R. Ratnasamy, and
S. Shenker. Recursively Cautious Congestion
Control. In 11th USENIX Symposium on
Networked Systems Design and Implementation
(NSDI 14), pages 373–385, Seattle, WA, Apr.
2014. USENIX Association.

[22] K. Nichols and V. Jacobson. Controlling Queue
Delay. Queue, 10(5), May 2012.

[23] A. Nikravesh, D. R. Choffnes, E. Katz-Bassett,
Z. M. Mao, and M. Welsh. Mobile Network
Performance from User Devices: A Longitudinal,
Multidimensional Analysis. In M. Faloutsos and
A. Kuzmanovic, editors, Passive and Active
Measurement - 15th International Conference,
PAM 2014, Los Angeles, CA, USA, March 10-11,
2014, Proceedings, pages 12–22. Springer, 2014.

[24] OPNET Modeler. http://www.opnet.com.

[25] P. Rong, B. Prabhakar, and K. Psounis. CHOKe -
a stateless active queue management scheme for
approximating fair bandwidth allocation. In
Proceedings of 19th Conference of the IEEE
Computer and Communications Societies.
INFOCOM 2000., volume 2, 2000.

[26] R. Schoenen, A. Otyakmaz, and Z. Xu. Resource
Allocation and Scheduling in FDD Multihop
Cellular Systems. In ICC Workshops 2009. IEEE
International Conference on, pages 1–6, June
2009.

[27] S. Shalunov. Low extra delay background
transport. Internet-draft, Internet Engineering
Task Force, 2010.

[28] A. Sivaraman, K. Winstein, P. Thaker, and
H. Balakrishnan. An Experimental Study of the
Learnability of Congestion Control. In ACM
SIGCOMM 2014, Chicago, IL, August 2014.

[29] K. Tan, J. Song, Q. Zhang, and M. Sridharan. A
compound TCP approach for high-speed and long
distance networks. In Proceedings of 25th
Conference of the IEEE Computer and
Communications Societies. INFOCOM, 2006.

[30] A. Venkataramani, R. Kokku, and M. Dahlin.
TCP Nice: A mechanism for background
transfers. ACM SIGOPS Operating Systems
Review, 36(SI), 2002.

521

[31] K. Winstein and H. Balakrishnan. End-to-end
Transmission Control by Modeling Uncertainty
About the Network State. In Proceedings of the
10th ACM Workshop on Hot Topics in Networks,
HotNets-X, pages 19:1–19:6, New York, NY, USA,
2011. ACM.

[32] K. Winstein and H. Balakrishnan. TCP Ex
Machina: Computer-generated Congestion
Control. In Proceedings of the ACM SIGCOMM
2013 Conference, 2013.

[33] K. Winstein, A. Sivaraman, and H. Balakrishnan.
Stochastic forecasts achieve high throughput and
low delay over cellular networks. In Proceedings of
the 10th USENIX conference on Networked
Systems Design and Implementation, 2013.

[34] Y. Xia, L. Subramanian, I. Stoica, and
S. Kalyanaraman. One More Bit is Enough.
SIGCOMM 2005, 2005.

[35] Y. Zaki, J. Chen, T. Pötsch, T. Ahmad, and
L. Subramanian. Dissecting Web Latency in
Ghana. In Proceedings of the ACM Internet
Measurement Conference (IMC), Vancouver, BC,
Canada, 2014.

522

	Introduction
	Related Work
	Channel Unpredictability
	The Verus Protocol
	Verus Implementation
	Delay Profile Initialization and Maintenance
	Timeouts and Retransmissions
	Verus Parameter Settings

	Verus Macro-Evaluation
	Real-world 3G and LTE Networks
	Trace-driven Evaluation

	Verus Micro-evaluation
	Conclusions
	Acknowledgments
	References

