
TIMELY: RTT-based Congestion Control for the
Datacenter

Radhika Mittal∗(UC Berkeley), Vinh The Lam, Nandita Dukkipati, Emily Blem, Hassan Wassel,
Monia Ghobadi∗(Microsoft), Amin Vahdat, Yaogong Wang, David Wetherall, David Zats

Google, Inc.

ABSTRACT
Datacenter transports aim to deliver low latency messag-
ing together with high throughput. We show that simple
packet delay, measured as round-trip times at hosts, is an
effective congestion signal without the need for switch feed-
back. First, we show that advances in NIC hardware have
made RTT measurement possible with microsecond accu-
racy, and that these RTTs are sufficient to estimate switch
queueing. Then we describe how TIMELY can adjust trans-
mission rates using RTT gradients to keep packet latency low
while delivering high bandwidth. We implement our design
in host software running over NICs with OS-bypass capabil-
ities. We show using experiments with up to hundreds of ma-
chines on a Clos network topology that it provides excellent
performance: turning on TIMELY for OS-bypass messaging
over a fabric with PFC lowers 99 percentile tail latency by
9X while maintaining near line-rate throughput. Our system
also outperforms DCTCP running in an optimized kernel,
reducing tail latency by 13X. To the best of our knowledge,
TIMELY is the first delay-based congestion control protocol
for use in the datacenter, and it achieves its results despite
having an order of magnitude fewer RTT signals (due to NIC
offload) than earlier delay-based schemes such as Vegas.

CCS Concepts
•Networks→ Transport protocols;

Keywords
datacenter transport; delay-based congestion control; OS-
bypass; RDMA
∗Work done while at Google

Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components of
this work must be honored. For all other uses, contact the owner/author(s).

SIGCOMM ’15 August 17-21, 2015, London, United Kingdom
c© 2015 Copyright held by the owner/author(s).

ACM ISBN 978-1-4503-3542-3/15/08.

DOI: http://dx.doi.org/10.1145/2785956.2787510

1. INTRODUCTION
Datacenter networks run tightly-coupled computing tasks

that must be responsive to users, e.g., thousands of back-
end computers may exchange information to serve a user
request, and all of the transfers must complete quickly
enough to let the complete response to be satisfied within
100 ms [24]. To meet these requirements, datacenter trans-
ports must simultaneously deliver high bandwidth (�Gbps)
and utilization at low latency (�msec), even though these
aspects of performance are at odds. Consistently low la-
tency matters because even a small fraction of late operations
can cause a ripple effect that degrades application perfor-
mance [21]. As a result, datacenter transports must strictly
bound latency and packet loss.

Since traditional loss-based transports do not meet these
strict requirements, new datacenter transports [10,18,30,35,
37, 47], take advantage of network support to signal the on-
set of congestion (e.g., DCTCP [35] and its successors use
ECN), introduce flow abstractions to minimize completion
latency, cede scheduling to a central controller, and more.
However, in this work we take a step back in search of a
simpler, immediately deployable design.

The crux of our search is the congestion signal. An ideal
signal would have several properties. It would be fine-
grained and timely to quickly inform senders about the ex-
tent of congestion. It would be discriminative enough to
work in complex environments with multiple traffic classes.
And, it would be easy to deploy.

Surprisingly, we find that a well-known signal, properly
adapted, can meet all of our goals: delay in the form of
RTT measurements. RTT is a fine-grained measure of con-
gestion that comes with every acknowledgment. It effec-
tively supports multiple traffic classes by providing an in-
flated measure for lower-priority transfers that wait behind
higher-priority ones. Further, it requires no support from
network switches.

Delay has been explored in the wide-area Internet since at
least TCP Vegas [16], and some modern TCP variants use
delay estimates [44, 46]. But this use of delay has not been
without problems. Delay-based schemes tend to compete
poorly with more aggressive, loss-based schemes, and delay

537

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200 250

C
D

F

RTT (µs)

Kernel TCP
HW Timestamp

Figure 1: RTTs measured by hardware timestamps have a
much smaller random variance than that by kernel TCP stack.

estimates may be wildly inaccurate due to host and network
issues, e.g., delayed ACKs and different paths. For these
reasons, delay is typically used in hybrid schemes with other
indicators such as loss.

Moreover, delay has not been used as a congestion sig-
nal in the datacenter because datacenter RTTs are difficult
to measure at microsecond granularity. This level of preci-
sion is easily overwhelmed by host delays such as interrupt
processing for acknowledgments. DCTCP eschews a delay-
based scheme saying “the accurate measurement of such
small increases in queueing delay is a daunting task.” [35]

Our insight is that recent NIC advances do allow data-
center RTTs to be measured with sufficient precision, while
the wide-area pitfalls of using delay as a congestion signal
do not apply. Recent NICs provide hardware support for
high-quality timestamping of packet events [1,3,5,8,9], plus
hardware-generated ACKs that remove unpredictable host
response delays. Meanwhile, datacenter host software can
be controlled to avoid competition with other transports, and
multiple paths have similar, small propagation delays.

In this paper, we show that delay-based congestion control
provides excellent performance in the datacenter. Our key
contributions include:
1. We experimentally demonstrate how multi-bit RTT sig-

nals measured with NIC hardware are strongly correlated
with network queueing.

2. We present Transport Informed by MEasurement of
LatencY (TIMELY): an RTT-based congestion control
scheme. TIMELY uses rate control and is designed to
work with NIC offload of multi-packet segments for high
performance. Unlike earlier schemes [16, 46], we do not
build the queue to a fixed RTT threshold. Instead, we use
the rate of RTT variation, or the gradient, to predict the
onset of congestion and hence keep the delays low while
delivering high throughput.

3. We evaluate TIMELY with an OS-bypass messaging im-
plementation using hundreds of machines on a Clos net-
work topology. Turning on TIMELY for RDMA trans-
fers on a fabric with PFC (Priority Flow Control) lowers
99 percentile tail latency by 9X . This tail latency is 13X
lower than that of DCTCP running in an optimized ker-
nel.

2. THE VALUE OF RTT AS A CONGES-
TION SIGNAL IN DATACENTERS

Existing datacenter transports use signals from network
switches to detect the onset of congestion and run with low
levels of latency and loss [15,35,37]. We argue that network

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 200 400 600 800 1000

C
D

F

RTT (µs)

Queue Length
Measured RTT

Figure 2: RTTs measured at end-system track closely the queue
occupancy at congested link.

queueing delay derived from RTT measurements, without
the need for any switch support, is a superior congestion sig-
nal.
RTT directly reflects latency. RTTs are valuable because
they directly measure the quantity we care about: end-to-
end latency inflated by network queueing. Signals derived
from queue occupancy such as ECN fail to directly inform
this metric. An ECN mark on a packet simply indicates that
the queue measure corresponding to the packet exceeds a
threshold. Rich use of QoS in the datacenter means it is not
possible to convert this threshold into a single corresponding
latency. Multiple queues with different priorities share the
same output link, but the ECN mark only provides informa-
tion about those with occupancy exceeding a threshold. Low
priority traffic can experience large queueing delays with-
out necessarily building up a large queue. In such circum-
stances, queueing delay reflects the state of congestion in the
network which is not reflected by queue occupancy of low
priority traffic. Further, an ECN mark describes behavior at
a single switch. In a highly utilized network, congestion oc-
curs at multiple switches, and ECN signals cannot differen-
tiate among them. The RTT accumulates information about
the end-to-end path. It includes the NIC, which may also
become congested but is ignored by most schemes. Finally,
RTTs work even for the lossless network fabrics commonly
used to support FCoE [2]. In these fabrics, mere queue occu-
pancy can fail to reflect congestion because of Priority Flow
Control mechanisms used to ensure zero packet loss.
RTT can be measured accurately in practice. A key prac-
tical hurdle is whether RTTs can be measured accurately in
datacenters where they are easily 1000X smaller than wide-
area latencies. Many factors have precluded accurate mea-
surement in the past: variability due to kernel scheduling;
NIC performance techniques including offload (GSO/TSO,
GRO/LRO); and protocol processing such as TCP delayed
acknowledgements. This problem is severe in datacenters
where each of these factors is large enough to overwhelm
propagation and queuing delays.

Fortunately, recent NICs provide hardware support to
solve these problems [1, 3, 5, 8, 9] and can accurately record
the time of packet transmission and reception without being
affected by software-incurred delays. These methods must
be used with care lest they overly tax the NIC. We describe
our use of NIC support later in the paper. These NICs also
provide hardware-based acknowledgements for some proto-
cols.

The combination of these features lets us take precise
RTT measurements to accurately track end-to-end network

538

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200 250 300 350

E
C

N
 F

ra
c
ti
o

n

RTT (µs)

 0
 0.2
 0.4
 0.6
 0.8

 1

0-100
100-150

150-200
200-250

250-300
300-350

E
C

N
 F

ra
c
ti
o
n

RTT Range (µs)

Figure 3: Fraction of packets with ECN marks versus RTTs
shown as scatter plot (top) and box plot (bottom).

queues. The following experiment shows this behavior: we
connect two hosts to the same network via 10 Gbps links
and send 16 KB ping-pong messages without any cross traf-
fic and on a quiescent network. Since there is no conges-
tion, we expect the RTT measurements to be low and stable.
Figure 1 compares the CDF of RTTs measured using NIC
hardware timestamps and RTTs measured via the OS TCP
stack. The CDF for RTTs using NIC timestamps is nearly a
straight line, indicating small variance. In contrast, the RTTs
measured by kernel TCP are larger and much more variable.
RTT is a rapid, multi-bit signal. Network queueing delay
can be calculated by subtracting known propagation and se-
rialization delays from an RTT. Surprisingly, we have found
that this method provides richer and faster information about
the state of network switches than explicit network switch
signals such as ECN marks. As a binary quantity, ECN
marks convey a single bit of information, while RTT mea-
surements convey multiple bits and capture the full extent
of end to end queueing delay aggregated across multiple
switches rather than the presence of queueing exceeding a
simple fixed threshold at any one of N switches. Since each
packet may carry an ECN mark, it is plausible that the se-
quence of marks can close this gap and convey multi-bit in-
formation about the congestion level, as is done in DCTCP
(which in practice is how ECN is used in datacenters). How-
ever, modern practices such as 64 KB segmentation offload
undermine the independence of marks made closely in time
because host sources are bursty. Large bursts at wire speed
tend to see most packets either above or below the marking
threshold.

Assuming it is accurate, a single high RTT measurement
immediately signals the extent of congestion. This RTT
measurement works even with packet bursts for a flow sent
along a single network path: the RTT of the last packet in
the burst tracks the maximum RTT across packets since de-
lays to earlier packets push out later packets. To show how
well RTT tracks network queuing delay, we set up an incast
experiment with 100 flows on 10 client machines simulta-
neously transmitting to a single server. To incorporate NIC
offload, we send 64 KB messages and collect only a single
RTT measurement per message on the client side. The bot-

Figure 4: With ACK prioritization acknowledgements from the
primary incast are not delayed by the data of the secondary
incast.

 0.2
 0.4
 0.6
 0.8

 1

 0 500 1000 1500 2000 2500

C
D

F

RTT (µs)

No reverse congestion
ACK prioritization

Reverse congestion

Figure 5: In the presence of reverse congestion, RTT mea-
surements with ACK prioritization are indistinguishable from
RTTs that do not experience any reverse path congestion.

tleneck link is a 10 Gbps link to the server. We sample the
switch queue each microsecond.

Figure 2 shows the CDF of RTTs as measured at the end
system compared to the queue occupancy measured directly
at the switch and shown in units of time computed for a
10 Gbps link. The two CDFs match extremely well.

In contrast, the ECN signal does not correlate well with
RTT and hence with the amount of queuing. We set up
a similar incast experiment, except now TCP senders per-
form long transfers to a single receiver. The bottleneck is
the 10 Gbps link to the receiver, with an 80 KB switch ECN
marking threshold. We instrument the senders to measure
the fraction of packets received with ECN marks in every
round-trip time, using the advance of SND_UNA [41] to
mark the end of an RTT round. We also measure the min-
imum RTT sample in every round, as prior work has found
it to be a robust descriptor untainted by delayed ACKs and
send/receive offload schemes. Both the scatter and box plots
1 [4] in Figure 3 show only a weak correlation between the
fraction of ECN marks and RTTs.
Limitations of RTTs. While we have found the RTT sig-
nal valuable, an effective design must use it carefully. RTT
measurements lump queueing in both directions along the
network path. This may confuse reverse path congestion
experienced by ACKs with forward path congestion experi-
enced by data packets. One simple fix is to send ACKs with
higher priority, so that they do not incur significant queuing
delay. This method works in the common case of flows that
predominantly send data in one direction; we did not need
more complicated methods.

We conducted an experiment to verify the efficacy of
ACK prioritization: we started two incasts (primary and sec-
ondary) such that the ACKs of the primary incast share the
same congested queue as the data segments of the secondary
incast, as shown in Figure 4. Figure 5 shows the CDF of

1Whiskers extend to the most distant point within 1.2X in-
terquartile range. Points outside these limits are drawn indi-
vidually.

539

Figure 6: TIMELY overview.

RTTs from the primary incast for the following three cases:
1) no congestion in ACK path (no secondary incast); 2) in
the presence of congestion in ACK path; and 3) ACKs from
primary incast are prioritized to higher QoS queue in the
presence of reverse congestion. We find that the reverse con-
gestion creates noise in RTT measurements of the primary
incast and elongates the tail latencies. Throughput of the
primary incast is also impacted (and hence the smaller RTTs
in the lower percentiles). With ACK prioritization, the RTTs
measured in the primary incast are indistinguishable from
those measured in the absence of reverse path congestion.

In future work, it would be straightforward to calculate
variations in one-way delay between two packets by embed-
ding a timestamp in a packet (e.g., TCP timestamps). The
change in queuing delay is then the change in the arrival
time minus send time of each packet. This method needs
only clocks that run at the same rate, which is a much less
stringent requirement than synchronized clocks.

The other classic shortcoming of RTTs is that changing
network paths have disparate delays. It is less of a problem
in datacenters as all paths have small propagation delays.

3. TIMELY FRAMEWORK
TIMELY provides a framework for rate control that is in-

dependent of the transport protocol used for reliability. Fig-
ure 6 shows its three components: 1) RTT measurement to
monitor the network for congestion; 2) a computation en-
gine that converts RTT signals into target sending rates; and
3) a control engine that inserts delays between segments to
achieve the target rate. We implement TIMELY in host soft-
ware with NIC hardware support, and run an independent
instance for each flow.

3.1 RTT Measurement Engine
We assume a traditional transport where the receiver ex-

plicitly ACKs new data so that we may extract an RTT. We
define the RTT in terms of Figure 7, which shows the time-
line of a message: a segment consisting of multiple packets
is sent as a single burst and then ACKed as a unit by the
receiver. A completion event is generated upon receiving
an ACK for a segment of data and includes the ACK receive
time. The time from when the first packet is sent (tsend) until
the ACK is received (tcompletion) is defined as the comple-
tion time. Unlike TCP, there is one RTT for the set of packets
rather than one RTT per 1-2 packets. There are several delay
components: 1) the serialization delay to transmit all packets
in the segment, typically up to 64 KB; 2) the round-trip wire
delay for the segment and its ACK to propagate across the

Figure 7: Finding RTT from completion time.

datacenter; 3) the turnaround time at the receiver to generate
the ACK; and 4) the queuing delay at switches experienced
in both directions.

We define the RTT to be the propagation and queueing de-
lay components only. The first component is a deterministic
function of the segment size and the line rate of the NIC. We
compute and subtract it from the total elapsed time so that
the RTTs input to TIMELY’s rate computation engine are
independent of segment size. The third component is suf-
ficiently close to zero in our setting with NIC-based ACKs
that we can ignore it. Of the remaining components, the
second is the propagation delay including the packet-based
store-and-forward behavior at switches. It is the minimum
RTT and fixed for a given flow. Only the last component –
the queueing delay – causes variation in the RTT, and it is
our focus for detecting congestion. In summary, TIMELY
running on Host A (shown in Figure 7) computes RTT as:

RTT = tcompletion − tsend −
seg. size

NIC line rate

For context, in a 10 Gbps network, serialization of 64 KB
takes 51 µs, propagation may range from 10-100 µs, and
1500 B of queuing takes 1.2 µs. We rely on two forms of
NIC support to precisely measure segment RTTs, described
next.
ACK Timestamps. We require the NIC to supply the com-
pletion timestamp, tcompletion. As shown in §2, OS times-
tamps suffer from variations such as scheduling and inter-
rupts that can easily obscure the congestion signal. tsend is
the NIC hardware time that’s read by host software just be-
fore posting the segment to NIC.
Prompt ACK generation. We require NIC-based ACK gen-
eration so that we can ignore the turnaround time at the re-
ceiver. An alternative would be to use timestamps to mea-
sure the ACK turnaround delay due to host processing de-
lay. We have avoided this option because it would require
augmenting transport wire formats to include this difference
explicitly.

Fortunately, some modern NICs [1, 3, 5, 8, 9] provide one
or both features, and our requirements are met naturally with
a messaging implementation that timestamps segment ac-
knowledgement. A specific implementation of TIMELY in
the context of RDMA is described in §5. We believe our de-
sign is more generally applicable to TCP with some care to
work with the batching behavior of the NIC, correctly asso-
ciate an ACK with the reception of new data, and compen-
sate for ACK turnaround time.

540

3.2 Rate Computation Engine
This component implements our RTT-based congestion

control algorithm as detailed in §4. The interface to the rate
computation engine is simple. Upon each completion event,
the RTT measurement engine provides the RTT in microsec-
onds to the rate computation engine. While this is the only
required input, additional timing information could also be
useful, e.g., the delay incurred in the NIC. There is no re-
quirement for packet-level operation; in normal operation
we expect a single completion event for a segment of size up
to 64 KB due to NIC offload. The rate computation engine
runs the congestion control algorithm upon each completion
event, and outputs an updated target rate for the flow.

3.3 Rate Control Engine
When a message is ready to be sent, the rate control en-

gine breaks it into segments for transmission, and sends each
segment to the scheduler in turn. For runtime efficiency, we
implement a single scheduler that handles all flows. The
scheduler uses the segment size, flow rate (provided by the
rate computation engine), and time of last transmission to
compute the send time for the current segment with the ap-
propriate pacing delay. The segment is then placed in a pri-
ority queue in the scheduler. Segments with send times in
the past are serviced in round-robin fashion; segments with
future send times are queued. After the pacing delay has
elapsed, the rate control engine passes the segment to the
NIC for immediate transmission as a burst of packets. Data
is first batched into 64 KB segments, following which the
scheduler computes the pacing delay to insert between two
such batched segments. Note that 64 KB is the maximum
batching size and is not a requirement, e.g., the segment
sizes for a flow that only has small messages to exchange at
any given time will be smaller than 64 KB. We later present
results for segment sizes smaller than 64 KB as well.

TIMELY is rate-based rather than window-based because
it gives better control over traffic bursts given the widespread
use of NIC offload. The bandwidth-delay product is only a
small number of packet bursts in datacenters, e.g., 51 µs at
10 Gbps is one 64 KB message. In this regime, windows do
not provide fine-grained control over packet transmissions.
It is easier to directly control the gap between bursts by spec-
ifying a target rate. As a safeguard, we limit the volume of
outstanding data to a static worst-case limit.

4. TIMELY CONGESTION CONTROL
Our congestion control algorithm runs in the rate compu-

tation engine. In this section, we describe our environment
and key performance metrics, followed by our gradient-
based approach and algorithm.

4.1 Metrics and Setting
The datacenter network environment is characterized by

many bursty message workloads from tightly-coupled forms
of computing over high bandwidth, low-latency paths. It is
the opposite of the traditional wide-area Internet in many
respects. Bandwidth is plentiful, and it is flow completion

time (e.g., for a Remote Procedure Call (RPC)) that is the
overriding concern. For short RPCs, the minimum comple-
tion time is determined by the propagation and serialization
delay. Hence, we attempt to minimize any queueing delay
to keep RTTs low. The latency tail matters because appli-
cation performance degrades when even a small fraction of
the packets are late [21]. Consistent low-latency implies low
queueing delay and near zero packet loss, since recovery ac-
tions may greatly increase message latency. Longer RPCs
will have larger completion times because of the time it takes
to transmit more data across a shared network. To keep this
added time small, we must maintain high aggregate through-
put to benefit all flows and maintain approximate fairness so
that no one flow is penalized.

Our primary metrics for evaluation are tail (99th per-
centile) RTT and aggregate throughput, as they determine
how quickly we complete short and long RPCs (assuming
some fairness). When there is a conflict between through-
put and packet RTT, we prefer to keep RTT low at the cost
of sacrificing a small amount of bandwidth. This is because
bandwidth is plentiful to start with, and increased RTT di-
rectly impacts the completion times of short transfers. In
effect, we seek to ride the throughput/latency curve to the
point where tail latency becomes unacceptable. Secondary
metrics are fairness and loss. We report both as a check
rather than study them in detail. Finally, we prefer a sta-
ble design over higher average, but oscillating rates for the
sake of predictable performance.

4.2 Delay Gradient Approach
Delay-based congestion control algorithms such as FAST

TCP [46] and Compound TCP [44] are inspired by the sem-
inal work of TCP Vegas [16]. These interpret RTT increase
above a baseline as indicative of congestion: they reduce the
sending rate if delay is further increased to try and maintain
buffer occupancy at the bottleneck queue around some pre-
defined threshold. However, Kelly et al. [33] argue that it is
not possible to control the queue size when it is shorter in
time than the control loop delay. This is the case in datacen-
ters where the control loop delay of a 64 KB message over
a 10 Gbps link is at least 51 µs, and possibly significantly
higher due to competing traffic, while one packet of queuing
delay lasts 1 µs. The most any algorithm can do in these
circumstances is to control the distribution of the queue oc-
cupancy. Even if controlling the queue size were possible,
choosing a threshold for a datacenter network in which mul-
tiple queues can be a bottleneck is a notoriously hard tuning
problem.

TIMELY’s congestion controller achieves low latencies
by reacting to the delay gradient or derivative of the queuing
with respect to time, instead of trying to maintain a standing
queue. This is possible because we can accurately measure
differences in RTTs that indicate changes in queuing delay.
A positive delay gradient due to increasing RTTs indicates a
rising queue, while a negative gradient indicates a receding
queue. By using the gradient, we can react to queue growth
without waiting for a standing queue to form – a strategy that
helps us achieve low latencies.

541

Algorithm 1: TIMELY congestion control.
Data: new_rtt
Result: Enforced rate
new_rtt_diff = new_rtt - prev_rtt ;
prev_rtt = new_rtt ;
rtt_diff = (1 - α) · rtt_diff + α · new_rtt_diff ;

. α: EWMA weight parameter
normalized_gradient = rtt_diff / minRTT ;
if new_rtt < Tlow then

rate← rate + δ ;
. δ: additive increment step

return;
if new_rtt > Thigh then

rate← rate ·
(

1 - β ·
(

1 - Thigh

new_rtt

))
;

. β: multiplicative decrement factor
return;

if normalized_gradient ≤ 0 then
rate← rate + N · δ ;

. N = 5 if gradient<0 for five completion events
(HAI mode); otherwise N = 1

else
rate← rate · (1 - β · normalized_gradient)

Delay gradient is a proxy for the rate mismatch at the
bottleneck queue. We are inspired by RCP, XCP, PI, and
QCN [10, 28, 32, 39] that find explicit feedback on the rate
mismatch has better stability and convergence properties
than explicit feedback based only on queue sizes; the lat-
ter can even cause the queue to be less accurately controlled.
The key difference is that all of these prior controllers oper-
ate at point queues in the network, while TIMELY achieves
similar benefits by using the end-to-end delay gradient.

The model we assume is N end hosts all sending data at
a total rate y(t) into a bottleneck queue with drain rate C,
i.e. the outgoing rate is ≤ C. We denote the queuing delay
through the bottleneck queue by q(t). If y(t) > C, the rate
at which the queue builds up is (y(t) − C). Since queued
data drains at a rate C, the queuing delay gradient is given
by dq(t)

dt = (y(t)−C)
C . The gradient is dimensionless. It is

positive for y(t) > C and signals how quickly the queue
is building. The negative gradient when y(t) < C, signals
how quickly the queue is draining. Hence, the delay gradi-
ent measured through RTT signals acts as an indicator for
the rate mismatch at the bottleneck. This reasoning holds as
long as there is some non-zero queue in the network. When
there is zero queueing or queues are not changing in size, the
measured gradient is also zero. TIMELY strives to match
the aggregate incoming rate y(t) to the drain rate, C, and
so adapts its per-connection rate, R(t), in proportion to the
measured error of (y(t)−C)

C = dq(t)
dt = d(RTT)

dt .

4.3 The Main Algorithm
Algorithm 1 shows pseudo-code for our congestion con-

trol algorithm. TIMELY maintains a single rate R(t) for
each connection and updates it on every completion event

Figure 8: Gradient tracking zone with low and high RTT
thresholds.

using RTT samples. It employs gradient tracking, adjusting
the rate using a smoothed delay gradient as the error signal
to keep throughput close to the available bandwidth. Ad-
ditionally, we employ thresholds to detect and respond to
extreme cases of under utilization or overly high packet la-
tencies. Figure 8 shows the gradient zone along with the two
thresholds. When the RTT is in the nominal operating range,
the gradient tracking algorithm computes the delay gradient
from RTT samples and uses it to adjust the sending rate.
Computing the delay gradient. We rely on accurate RTT
measurements using NIC timestamps (§3). To compute the
delay gradient, TIMELY computes the difference between
two consecutive RTT samples. We normalize this difference
by dividing it by the minimum RTT, obtaining a dimension-
less quantity. In practice, the exact value of the minimum
RTT does not matter since we only need to determine if the
queue is growing or receding. We therefore use a fixed value
representing the wire propagation delay across the datacen-
ter network, which is known ahead of time. Finally, we pass
the result through an EWMA filter. This filter allows us to
detect the overall trend in the rise and fall in the queue, while
ignoring minor queue fluctuations that are not indicative of
congestion.
Computing the sending rate. Next, TIMELY uses the nor-
malized gradient to update the target rate for the connec-
tion. If the gradient is negative or equals zero, the network
can keep up with the aggregate incoming rate, and therefore
there is room for a higher rate. In this case, TIMELY probes
for more bandwidth by performing an additive increment for
the connection: R = R + δ, where δ is the bandwidth ad-
ditive increment constant. When the gradient is positive, the
total sending rate is greater than network capacity. Hence,
TIMELY performs a multiplicative rate decrement β, scaled
by the gradient factor:

R = R
(
1− β d(RTT (t))

dt

)
The delay gradient signal, which is based on the total incom-
ing and outgoing rates, is common for all connections along
the same congested path. The well-known AIMD property
ensures that our algorithm achieves fairness across connec-
tions [19]. Connections sending at a higher rate observe a
stronger decrease in their rate, while the increase in rate re-
mains same for all connections.

While the delay gradient is effective in normal operation,
situations with significant under-utilization or high latency
require a more aggressive response. Next we discuss how
TIMELY detects and responds to these situations.
Need for RTT low threshold Tlow. The ideal environment
for our algorithm is one where packets are perfectly paced.

542

 0.2
 0.4
 0.6
 0.8

 1

 0 100 200 300 400 500 600 700 800 900

C
D

F

RTT (µs)

Gradient
Target RTT=500us
Target RTT=50us

 0

 5

 10

 15

 20

 1 2 3 4 5 6 7 8 9

T
h
ru

p
u

t
(G

b
p
s
)

Time (s)

Gradient
Target RTT=500us
Target RTT=50us

Figure 9: Comparison of gradient (low and high thresholds of
50 µs and 500 µs) with target-based approach (Ttarget of 50 µs
and 500 µs).

However, in practical settings, the TIMELY rate is enforced
on a segment granularity that can be as large as 64 KB. These
large segments lead to packet bursts, which result in transient
queues in the network and hence RTT spikes when there is
an occasional collision. Without care, the core algorithm
would detect a positive gradient due to a sudden RTT spike
and unnecessarily infer congestion and back-off. We avoid
this behavior by using a low threshold Tlow to filter RTT
spikes; the adjustment based on delay gradient kicks in for
RTT samples greater than the threshold. Tlow is a (nonlinear)
increasing function of the segment size used in the network,
since larger messages cause more bursty queue occupancy.
We explore this effect in our evaluation, as well as show how
fine-grained pacing at the hosts can reduce burstiness and
hence the need for a low threshold.
Need for RTT high threshold Thigh. The core gradient al-
gorithm maintains close to the bottleneck link throughput
while building very little queue. However, in theory, it is
possible for the gradient to stay at zero while the queue re-
mains at a high, fixed level. To remove this concern, Thigh
serves as an upper bound on the tolerable end-to-end net-
work queue delay, i.e., the tail latency. It provides a way to
reduce the rate independent of gradient value if the latency
grows, a protection that is possible because we operate in
a datacenter environment with known characteristics. If the
measured RTT is greater than Thigh, we reduce the rate mul-
tiplicatively:

R = R
(
1− β

(
1− Thigh

RTT

))
Note that we use the instantaneous rather than smoothed
RTT. While this may seem unusual, we can slow down in
response to a single overly large RTT because we can be con-
fident that it signals congestion, and our priority is to main-
tain low packet latencies and avoid loss. We tried responding
to average RTT as a congestion indicator, and found that it
hurts packet latency because of the extra delay in the feed-
back loop. By the time the average rose, and congestion con-
trol reduces the rate, queueing delay has already increased
in the network. Our finding is inline with [27] which shows
through a control theoretic analysis that the averaged queue

 0
 200
 400
 600
 800

 1000

 0 200 400 600 800 1000

R
a

te
 (

M
b

p
s
)

Time (ms)

Gradient approach
Fair share: 500 Mbps

 0
 200
 400
 600
 800

 1000

 0 200 400 600 800 1000

R
a

te
 (

M
b

p
s
)

Time (ms)

Queue size approach
Fair share: 500 Mbps

Figure 10: Per-connection rates in the gradient approach are
smooth (top) while those in the queue-size based approach
(with Ttarget = 50µs) are more oscillatory (bottom).

length is a failing of RED AQM. We show in §6 how Thigh
lets us ride to the right along the throughput-delay tradeoff
curve.
Hyperactive increase (HAI) for faster convergence. In-
spired by the max probing phase in TCP BIC, CUBIC [42]
congestion control, and QCN [10], we include an HAI option
for faster convergence as follows: if TIMELY does not reach
the new fair share after a period of slow growth, i.e., the gra-
dient is negative for several consecutive completion times,
then HAI switches to a faster additive increase in which the
rate is incremented by Nδ instead of δ. This is useful when
the new fair share rate has dramatically increased due to re-
duced load in the network.

4.4 Gradient versus Queue Size
We highlight through an experiment how the gradient ap-

proach differs from a queue size based scheme. If we set
the same value for Tlow and Thigh, then TIMELY conges-
tion control reduces to a queue size based approach (similar
to TCP FAST algorithm; FAST in turn is a scaled, improved
version of Vegas). Denote Ttarget as the value of this single
RTT threshold, i.e., Ttarget = Tlow = Thigh. Then the rate
is increased additively and decreased multiplicatively with
the decrease factor scaled by the queue size above Ttarget.

Figure 9 compares the RTT and throughput for the gradi-
ent and queue size based approach for an incast traffic pat-
tern. (See §6 for experimental details.) We use low and high
thresholds of 50 µs and 500 µs for gradient, versus Ttarget
of 50 µs and 500 µs for the queue-sized approach. We see
that the queue size approach can maintain either low latency
or high throughput, but finds it hard to do both. By building
up a standing queue up to a high Ttarget of 500 µs, through-
put is optimized, but at the cost of latency due to queue-
ing. Alternatively, by keeping the standing queue at a low
Ttarget of 50 µs, latency is optimized, but throughput suf-
fers as the queue is sometimes empty. By operating on the
rising and falling queue, the gradient approach predicts the
onset of congestion. This lets it deliver the high throughput
of a high queue target while keeping the tail latency close to
that of a low target.

543

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 50 100 150 200 250

C
D

F

RTT (µs)

Software
Approximated Hardware

Direct Hardware

Figure 11: Comparison of the accuracy of NIC and SW times-
tamps.

Furthermore, as shown in Figure 10, the connection rates
oscillate more in the queue-size approach, as it drives the
RTT up and down towards the target queue size. The gradi-
ent approach maintains a smoother rate around the fair share.
Similar results are shown in control theory terms for AQMs
using the queue-size approach and gradient approach [28].

The main take-away is that Tlow and Thigh thresholds ef-
fectively bring the delay within a target range and play a
role similar to the target queue occupancy in many AQM
schemes. Using the delay gradient improves stability and
helps keep the latency within the target range.

5. IMPLEMENTATION
Our implementation is built on 10 Gbps NICs with OS-

bypass capabilities. The NICs support multi-packet seg-
ments with hardware-based ACKs and timestamps. We im-
plemented TIMELY in the context of RDMA (Remote Di-
rect Memory Access) as a combination of NIC functionality
and host software. We use RDMA primitives to invoke NIC
services and offload complete memory-to-memory transfers
to the NIC. In particular, we mainly use RDMA Write and
Read to take a message from local host memory and send it
on the network as a burst of packets. On the remote host,
the NIC acknowledges receipt of the complete message and
places it directly in the remote memory for consumption by
the remote application. The local host is notified of the ac-
knowledgement when the transfer is complete. We describe
below some of the notable points of the implementation.
Transport Interface. TIMELY is concerned with the con-
gestion control portion of the transport protocol; it is not
concerned with reliability or the higher-level interface the
transport exposes to applications. This allows the inter-
face to the rest of the transport to be simple: message send
and receive. When presented with a message at the sender,
TIMELY breaks it into smaller segments if it is large and
sends the segments at the target rate. A message is simply
an ordered sequence of bytes. The segment is passed to the
NIC and then sent over the network as a burst of packets.
On the remote host, the NIC acknowledges receipt of the
complete segment. At the receiver, when a segment is re-
ceived it is passed to the rest of the transport for processing.
This simple model supports transports ranging from RPCs
to bytestreams such as TCP.
Using NIC Completions for RTT Measurement. In prac-
tice, using NIC timestamps is challenging. Our NIC only
records the absolute timestamp of when the multi-packet op-
eration finishes and therefore our userspace software needs
to record a timestamp of when the operation was posted

to the NIC. This requires a scheme to map host clock to
NIC clock, as well as calibration. We record host (CPU)
timestamps when posting work to the NIC and build a cal-
ibration mechanism to map NIC timestamps to host times-
tamps. A simple linear mapping is sufficient. The mech-
anism works well because the probability of being inter-
rupted between recording the host send timestamp and ac-
tually handing the message to the NIC is fairly low. Fig-
ure 11 compares RTTs obtained from NIC HW timestamps,
the calibration mechanism, and pure software only times-
tamps. Note that TIMELY does not spin, so interrupts and
wakeups are included in the software timestamp numbers. It
clearly demonstrates that the calibration mechanism is just
as accurate as using only NIC timestamps. Furthermore, the
SW timestamps have a large variance, which increases as
load on the host increases.

We consider any NIC queuing occurring to be part of the
RTT signal. This is important because NIC queuing is also
indicative of congestion and is handled by the same rate-
based controls as network queueing — even if the NIC were
to give us an actual send timestamp, we would want the abil-
ity to observe NIC queuing.
RDMA rate control. For RDMA Writes, TIMELY on the
sender directly controls the segment pacing rate. For RDMA
Reads, the receiver issues read requests, in response to which
the remote host performs a DMA of the data segments. In
this case, TIMELY cannot directly pace the data segments,
but instead achieves the same result by pacing the read re-
quests: when computing the pacing delay between read re-
quests, the rate computation engine takes into account the
data segment bytes read from the remote host.
Application limited behavior. Applications do not always
have enough data to transmit for their flows to reach the tar-
get rate. When this happens, we do not want to inadvertently
increase the target rate without bound because the network
appears to be uncongested. To prevent this problem, we let
the target rate increase only if the application is sending at
more than 80% of the target rate, and we also cap the maxi-
mum target rate at 10 Gbps. The purpose of allowing some
headroom is to let the application increase its rate without an
unreasonable delay when it does have enough data to send.
Rate update frequency. TIMELY’s rate update equation
assumes that there is at most one completion event per RTT
interval. The transmission delay of a 64 KB message on a
10 Gbps link is 51 µs; with a minimum RTT of 20 µs, there
can be at most one completion event in any given minimum
RTT interval. However, for small segment sizes, there can be
multiple completion events within a minimum RTT interval.
In such a scenario, we want to update the rate based on the
most recent information. We do so by updating the rate for
every completion event, taking care to scale the updates by
the number of completions per minimum RTT interval so
that we do not overweigh the new information.

For scheduler efficiency, the rate control engine enforces
rate updates lazily. When the previously computed send time
for a segment elapses, the scheduler checks the current rate.
If the rate has decreased, we recompute the send time, and

544

 0

 5

 10

 15

 20

0 25 50 75 100

T
h
ru

p
u

t
(G

b
p
s
)

Average Added RTT Noise (µs)

Figure 12: Impact of RTT noise on TIMELY throughput.

re-queue the segment if appropriate. Otherwise, the sched-
uler proceeds to send the segment to the NIC.
Additional pacing opportunities. By default, the NIC
sends a segment as a burst of packets at the link line rate. We
explore another possibility: using NIC rate-limiters to trans-
mit a burst of packets at less than the line rate. The rationale
is to supplement the pacing engine that spreads packets of
the flow over time with NIC-sized units of work. With hard-
ware rate-limiters [43], it is feasible to offload part of the
responsibility for pacing to the NIC. However due to hard-
ware constraints, re-configuring pacing rate every few RTTs
is not always feasible. Instead, we use a hybrid approach:
software pacing of large segments and hardware pacing at
fixed rate below the link rate, e.g. 5 Gbps on a 10 Gbps
link. At these high-rates, the purpose of NIC pacing is to in-
sert gaps in the burst so that multiple bursts mix at switches
without causing latency spikes. In this case, the rate control
engine compensates for the NIC pacing delays by treating it
as a lower transmission line rate.

6. EVALUATION
We evaluate a real host-based implementation of TIMELY

at two scales. First, we examine the basic properties of the
congestion controller such as throughput, fairness, packet la-
tency, and timing accuracy in an incast setting. For these
microbenchmarks, we use a small-scale testbed with a rack
of equipment. Second, we run TIMELY on a larger scale
testbed of a few hundred machines in a classic Clos network
topology [12, 34]. Along with running the traffic workload,
hosts collect measurements of per-connection throughputs,
RPC latencies, and RTTs (we established in §2 that host
RTTs correspond well with queueing delays measured at the
switches). All links are 10 Gbps unless mentioned other-
wise. The OS used in all experiments is Linux.

To place our results in context, we compare TIMELY with
two alternatives. First, we use OS-bypass messaging over a
fabric with Priority Flow Control (PFC) as commonly used
for low loss and latency in FCoE, e.g. DCB [2]. The RDMA
transport is in the NIC and sensitive to packet drops, so PFC
is necessary because drops hurt performance badly. We add
TIMELY to this RDMA setting to observe its benefits; we
check that pause message counts are low to verify that there
is sufficient switch buffering for TIMELY to work and PFC
is not an inadvertent factor in our experimental results. Sec-
ond, we compare against an optimized kernel stack that im-
plements DCTCP [35] running on the same fabric without
the use of PFC. We choose DCTCP as a point of comparison
because it is a well-known, modern datacenter transport that
has been deployed and proven at scale.

Metric DCTCP
FAST*

PFC TIMELY
10M 50M 100M

Total Throughput (Gbps) 19.5 7.5 12.5 17.5 19.5 19.4
Avg. RTT (us) 598 19 120 354 658 61

99-percentile RTT (us) 1490 49 280 460 1036 116

Table 1: Overall performance comparison. FAST* is shown
with network buffered traffic parameter in Mbps.

Henceforth we refer to: 1) DCTCP, for kernel DCTCP
over a fabric without PFC; 2) PFC, for OS-bypass messag-
ing over a fabric with PFC; 3) FAST*, for OS-bypass mes-
saging with TCP FAST-like congestion control algorithm;
and 4) TIMELY, for OS-bypass messaging with TIMELY
over a fabric with PFC

Unless mentioned otherwise, we use the following param-
eters for TIMELY: segment size of 16 KB, Tlow of 50 µs,
Thigh of 500 µs, additive increment of 10 Mbps, and a mul-
tiplicative decrement factor (β) of 0.8.

6.1 Small-Scale Experiments
We use an incast traffic pattern for small-scale experi-

ments (unless otherwise specified) since it is a key conges-
tion scenario for datacenter networks [45]. To create incast,
10 client machines on a single rack send to a single server on
the same rack. Each client runs 4 connections, i.e., 40 total
concurrent connections. Each connection sends 16 KB seg-
ments at a high enough aggregate rate to saturate the server
bandwidth of 2x10G link which is the bottleneck for the ex-
periment. This is a demanding workload for testing conges-
tion control: while there are many connections present in the
datacenter, the number of connections limited by network
capacity is normally small.
Required RTT measurement accuracy. To evaluate the ac-
curacy of RTT samples required by TIMELY, we add noise
to the measured RTTs and observe the impact on throughput.
We add random noise uniformly distributed in the range of
[0, x] µs to each RTT sample, where x is set to 0, 50, 100,
150, 200. Figure 12 shows the total throughput measured
on the server at different noise levels. Average noise of 50
µs causes visible throughput degradation, and higher noise
leads to more severe performance penalties. A Tlow value
lower than 50 µs lowers the tolerance to RTT noise even
further. Note that this level of noise is easily reachable by
software timestamping (due to scheduling delays, coalesc-
ing, aggregation, etc.). Hence, accurate RTT measurement
provided by NIC support is the cornerstone of TIMELY.
Comparison with PFC. Table 1 compares TIMELY with
OS-bypass messaging over a fabric with conventional
RDMA deployment over PFC. While the throughput is
slightly lower with TIMELY, the median and tail RTTs are
lower by more than order of magnitude and pauses are not
triggered at all. Next, we break out connections to show
that TIMELY also delivers excellent performance for indi-
vidual connections. Figure 13 shows a timeline of the ob-
served RTT and throughput for a sample for four individ-
ual connections using TIMELY. Each datapoint represents
a single completion event. The fair share for each connec-
tion is 500 Mbps. We see that the throughput is close to the

545

Figure 13: RTTs and sending rates of a sample of connections
for TIMELY. The legend gives the mean and standard devia-
tion for each connection.

 0
 0.2
 0.4
 0.6
 0.8

 1

 0 200 400 600 800 1000 1200 1400

C
D

F

RTT (µs)

TIMELY
DCTCP

Figure 14: CDF of RTT distribution

fair share and the RTT remains consistently low. To quan-
tify the fairness of bandwidth allocation across connections,
we compute a Jain fairness index [31] of 0.953 for TIMELY
and 0.909 for PFC. Our design is more fair, and has a high
enough index to meet our fairness needs.
Comparison with DCTCP. We compare TIMELY with
DCTCP. To review briefly: senders emit ECN capable pack-
ets; switches mark each packet queued beyond a fixed
threshold; receivers return all ECN marks to the sender; and
senders adapt their rate based on the fraction of packets with
ECN marks in a window. Note that of necessity our com-
parison is for two different host software stacks, as DCTCP
runs in an optimized kernel without PFC support whereas
TIMELY is used with OS-bypass messaging. We did not
implement DCTCP in OS-bypass environment due to NIC
firmware limitations on processing ECN feedback [48]. We
set the switch ECN marking threshold to K = 80 KB. This
is less than the DCTCP author recommendation of K = 65
packets for 10 Gbps operation as we are willing to sacrifice
a small amount of throughput to ensure consistently low la-
tency. Table 1 summarizes the results averaged across three
runs of ten minutes, with the RTT distribution shown in Fig-
ure 14. TIMELY keeps the average end-to-end RTT 10X
lower than DCTCP (60 µs vs. 600 µs). More significantly,
the tail latency drops by almost 13X (116 µs vs. 1490 µs).
No loss nor PFC packets were observed. These latency re-
ductions do not come at the cost of throughput.
Comparison with TCP FAST-like algorithm. We next
implement FAST* using TCP FAST congestion control de-
sign [46] in place of Algorithm 1. Instead of periodically up-
dating the congestion window, we use the TCP FAST equa-
tion to adjust the pacing rate. Note that TCP FAST is tunable

0
100
200
300
400
500

R
TT

(µ
s)

16KB segments:
32KB segments:
64KB segments:

Avg RTT
Avg RTT
Avg RTT

99
99
99

Thruput
Thruput
Thruput

400 300 200 100 50 20 0
Tlow (µs)

0

5

10

15

20

Th
ru

pu
t(

G
bp

s)

Figure 15: Throughput and RTT varying with Tlow and seg-
ment size

by a protocol parameter α that controls the balance between
fairness and the amount of buffered traffic in the network.
In [46], α is the number of packets of each flow pending
in the network. We convert α to a throughput value since
TIMELY is rate-based. Table 1 shows our results with three
different values of α. For a small α = 10 Mbps, FAST* can
achieve low tail latency 49us albeit at a significant through-
put loss – achieving only 7.5 Gbps out of 20 Gbps line rate.
At larger values (α = 50 Mbps and 100 Mbps), TIMELY still
achieves better throughput and latency trade-offs.
Varying Tlow. Our performance is influenced by algorithm
parameters, which we explore starting with the low thresh-
old. Our purpose is to highlight factors that affect the thresh-
olds, not to tune parameters. By design no more than a de-
fault setting is necessary. The low threshold exists to ab-
sorb the RTT variation during uncongested network use. The
expected variation is related to the maximum segment size,
since as segments grow larger the effect on the RTT of oc-
casional segment collisions increases. Figure 15 shows how
the bottleneck throughput and RTT times vary with differ-
ent values of Tlow for segments of size 16 KB, 32 KB and
64 KB.

We see that decreasing the low threshold reduces the net-
work delay. This is because a lower threshold allows the
use of the RTT gradient more often to modulate the rate
in response to queue build-ups. But lower thresholds even-
tually have an adverse effect on throughput. This is best
seen with bursty traffic. For 16 KB segment size, when the
burstiness is relatively low, a Tlow of just 50 µs gives us the
highest throughput (19.4 Gbps), with the throughput being
only slightly lower (18.9 Gbps) without any Tlow. However,
as we increase the segment size and hence the burstiness,
the throughput falls quickly when the threshold becomes too
small. For 32 KB segments, the tipping point is a Tlow of
100 µs. For the most demanding workload of 64 KB seg-
ments, the transition is between 200–300 µs. Such large
bursts make it difficult to obtain both high throughput and
low delay. This is unsurprising since each segment is sent
as a long series of back-to-back packets at wire speed, e.g.,
64 KB is at least 40 packets.
Smoothing Bursts with Fine-Grained Pacers. The Rate
Control Engine described in §3.3 introduces a pacing delay

546

0

50

100

150

200

250

R
TT

(µ
s)

50µs Tlow:
No Tlow:

Avg RTT
Avg RTT

99
99

Thruput
Thruput

No
Pacing

7000 5000 3000 1000 900 800 700 600 500

Pacing Rate (Mbps)

0

5

10

15

20

Th
ru

pu
t(

G
bp

s)

Figure 16: Throughput and RTT varying with pacing rate for
64 KB segments

between segments. To further mitigate the burstiness with
large segments of 64 KB, while still enabling NIC offload,
we explore fine-grained pacing. In this model, in addition to
the host software pacing segments, the NIC hardware uses
pacing to send the packets in each segment at a configurable
rate lower than line rate. Pacing allows packets to mix more
easily in the network. Programmable NICs such as NetF-
PGA [6] allow a pacing implementation. Prior work such
as HULL [37] has also made use of NIC pacing, and fine-
grained pacing queueing disciplines such as FQ/pacing are
in Linux kernels [7].

We repeat the incast experiment using 64 KB segments,
this time with NIC pacing, with two values of Tlow: 0 µs
and 50 µs. We are not able to implement a dynamic fine-
grained pacing rate at this time and so use static rates. When
computing RTTs from the completion times, we subtract the
serialization delay introduced by NIC pacers to allow for
comparison, e.g., pacing a 64 KB message at 1 Gbps intro-
duces a serialization delay of 512 µs. Figure 16 shows the
results for different NIC pacing rates. As expected, the re-
duced burstiness due to pacing leads to increase in through-
put and decrease in delay, with larger throughput increases
for greater pacing. The most benefit is seen at 700 Mbps:
18.9 Gbps throughput for Tlow = 50 µs and 18.4 Gbps in the
absence of any Tlow (as opposed to 11.2 Gbps and 10.2 Gbps
respectively without any pacing). Note that this also means
single flow performance is capped at 700 Mbps, unless the
pacing rate is adjusted dynamically. There is a slight dip in
the throughput and rise in delay beyond this level, as pacing
approaches the fair share and has a throttling effect.

We note that NIC hardware pacing is not an absolute re-
quirement in TIMELY design; but rather helps navigate the
tradeoff between lower network tail latency and higher CPU
overhead that can be caused by software pacing with smaller
segments.
Varying Thigh. TIMELY employs a high threshold to re-
act quickly to large RTTs. This threshold matters less than
the low threshold because it only comes into play for large
RTTs, but it becomes useful as the level of connection mul-
tiplexing grows and the likelihood of RTT spikes increase.

Figure 17 shows the effect on throughput as the high
threshold is reduced for different numbers of competing con-

0
100
200
300
400
500
600

R
TT

(µ
s)

4 sessions:
7 sessions:
10 sessions:

Avg RTT
Avg RTT
Avg RTT

99
99
99

Thruput
Thruput
Thruput

10000 1000 500 400 300 200 100 50
Thigh (µs)

0

5

10

15

20

Th
ru

pu
t(

G
bp

s)

Figure 17: Total throughput and RTT varying with Thigh for
different number of connections. Segment Size = 16 KB, Tlow

= 50 µs

 0
 500

 1000
 1500
 2000
 2500

 0 20 40 60 80 100 120 140

R
a

te
 (

M
b

p
s
)

Time (ms)

HAI
No HAI

Figure 18: HAI quickly acquires available bandwidth.

nections. In our earlier runs with four connections per client,
the 99-percentile RTTs are around 100 µs. This means that
any Thigh > 100µs has little effect. As the load climbs to
7 connections per client, the 99-percentile RTT settles close
to 200 µs. Then there is a drop in RTT as we reduce Thigh
to 100 µs and below. For 10 connections per client, the 99-
percentile RTTs remain close to 500 µs for Thigh of 500 µs
or more, and decrease as Thigh falls. The throughput is quite
good for Thigh down to 100 µs, but is significantly lower at
50 µs for all three connection levels. These results show that
a high threshold down to at most 200 µs helps to reduce tail
latency without degrading throughput.
Hyper active increment (HAI). HAI helps to acquire avail-
able bandwidth more quickly. To show this, we perform an
incast with a change in the offered load. The incast starts
with 10 clients and 10 connections per client. After an initial
period for convergence, every client simultaneously shuts
down 9 of its 10 connections, thus increasing the fair share
rate of the remaining connection by 10X. Figure 18 shows
how HAI ramps up connection throughput from an initial
fair rate of 200 Mbps to 1.5 Gbps within 50 ms, and reaches
the new fair share of 2 Gbps in 100 ms. In contrast, a fixed
additive increment only achieves 1.5 Gbps after 140 ms. We
find that a HAI threshold of five successive RTTs strikes a
good balance between convergence and stability.

6.2 Large-Scale Experiments
We investigate TIMELY’s large-scale behavior with ex-

periments run on a few hundred machines in a classic Clos
topology [12, 34]. We show that TIMELY is able to main-
tain predictable and low latency in large all-to-all and incast
network congestion scenarios. The experiment generates
RPCs between client server pairs. To stress TIMELY and

547

 0.2

 0.4

 0.6

 0.8

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

A
c
c
e
p

te
d
 L

o
a
d

(n
o
rm

a
liz

e
d
)

Offered Load (normalized)

PFC
TIMELY

Figure 19: Accepted versus offered load (64 KB messages).

 0
 100
 200
 300
 400
 500
 600
 700

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1M
e

d
ia

n
 R

T
T

 (
µ

s
)

Offered Load (normalized)

PFC
TIMELY

 0
 1000
 2000
 3000
 4000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 19
9

%
ile

 R
T

T
 (

µ
s
)

Offered Load (normalized)

PFC
TIMELY

Figure 20: Median and 99-percentile RTTs as measured by
pingers under different offered load.

create increased burstiness, we used 64 KB RPCs and seg-
ment sizes.
Longest path uniform random. In this traffic pattern, a
client picks a server from a set of servers with the longest
path through the network. Clients issue 64 KB requests.
The server replies with a payload of the same size. The
benchmark collects goodput and RPC latency. RPC latency
is computed at the client from the time the request is sent to
the server, to when it receives a response from the server.

Figure 19 shows normalized throughput (to the maximum
offered load used in the experiment) as observed by the ap-
plication for increasing offered loads on the x-axis. The sat-
uration point of the network (the point at which accepted
load is less than the offered load) is higher for TIMELY as
it is able to send more traffic by minimizing queueing and
thereby also pause frames per second.

Figure 20 shows RTT versus load. TIMELY reduces the
median and 99-percentile RTT by 2X and 5X respectively
compared to PFC. This results in a corresponding reduc-
tion of RPC median latency of about 2X (shown in Fig-
ure 21). Without TIMELY, beyond saturation the network
queuing increases in an attempt to reach the offered load.
With TIMELY, low network queuing is maintained by mov-
ing queuing from the shared network to the end-host (where
it is included in RPC latency but not in the RTTs). Therefore,
the 99-percentile of RPC latency reduction effect diminishes
as the offered load increases beyond the saturation point.
Network imbalance (incast). To stress TIMELY’s ability
to mitigate congestion, we designed an experiment with a
background load of longest path uniform random traffic and
then added an incast load. We use three levels of background
load: low (0.167 of the maximum offered load in Figure 19),
medium (0.3) and high (0.5). Figure 22 shows the normal-

 200
 400
 600
 800

 1000
 1200
 1400
 1600

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

M
e

d
ia

n
 R

P
C

L
a

te
n
c
y
 (

µ
s
)

Offered Load (normalized)

PFC
TIMELY

 0
 2000
 4000
 6000
 8000

 10000
 12000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

9
9

%
ile

 R
P

C
 L

a
te

n
c
y
 (

µ
s
)

Offered Load (normalized)

PFC
TIMELY

Figure 21: Median and 99-percentile RPC latencies.

 0
 0.2
 0.4
 0.6
 0.8

 1

PFC-low
TIMELY-low

PFC-med

TIMELY-med

PFC-high

TIMELY-high

T
h

ro
u
g

h
p

u
t

(n
o
rm

a
liz

e
d
) UR UR(w/ M-to-1)

10
0

10
1

10
2

10
3

10
4

10
5

PFC-low
TIMELY-low

PFC-med

TIMELY-med

PFC-high

TIMELY-high

9
9
%

ile
 R

T
T

 (
µ

s
)

UR UR(w/ M-to-1)

Figure 22: Adding one 40-to-1 pattern to longest path uniform
random ((a) Normalized throughput (b) 99-percentile RTT).

ized throughput and 99-percentile RTT for this experiment.
We normalize throughput to that of the background load. We
know from Figure 19 that TIMELY and PFC throughput are
the same for uniform random traffic before network satura-
tion. When we add an incast, without TIMELY, throughput
falls by 13% to 54%, depending on the background network
load, primarily due to head of line blocking created by PFCs.
This observation is confirmed with RTT measurements in
Figure 22, which show that TIMELY is able to keep queuing
relatively low, preventing congestion spreading [20, 36], by
rate limiting only the flows passing along the congested path.
The overall throughput for TIMELY remained the same dur-
ing the incast.
Application level benchmark.

Figure 23 shows RPC latency of a datacenter storage
benchmark (note that the y-axis is on a log-scale). With-
out TIMELY, the application is limited in the amount of
data it can push through the network while keeping the 99th
percentile RTT low enough. With TIMELY, the application
is able to push at higher utilization levels without suffering
negative latency consequences. Therefore, the drop in appli-
cation data unit latency (in seconds) is really a reflection of
the increased throughput that the application is able to sus-
tain during query execution.

548

Figure 23: Application-level benchmark.

7. RELATED WORK
Datacenter congestion control is a deeply studied

topic [15, 18, 35, 37, 38, 47]. TIMELY focuses on the same
problem.

RED [23] and CoDel [40] drop packets early, prompt-
ing senders to reduce transmission rates to avoid the large
standing queues associated with tail drops. However, loss
still drives up latencies for the flows that experience packet
drops. To avoid packet drops, many schemes rely on switch-
support in the form of ECN, in which packets are marked
to indicate congestion [22]. ECN marks are often combined
across multiple packets [15, 35, 37] to provide fine-grained
congestion information, but our experiments in §2 show that
ECN has inherent limitations. There have also been other
proposals that rely on switch support to mitigate congestion
such as QCN [29] (fine-grained queue occupancy informa-
tion) and pFabric [38] (fine-grained prioritization).

TIMELY belongs to a different class of algorithms that
use delay measurements to detect congestion, which requires
no switch-support. We take inspiration from TCP Vegas,
FAST, and Compound [16, 44, 46]. These proposals are
window-based and maintain a queue close to the minimum
RTT. In contrast, TIMELY is a rate-based algorithm that em-
ploys a gradient approach and does not rely on measuring
the minimum RTT. We show that it works well with NIC
support, despite infrequent RTT signals.

A recent scheme, DX [17], independently identified the
benefits of using delay as congestion signal for high through-
put and low latency datacenter communications. DX imple-
ments accurate latency measurements using a DPDK driver
for the NIC and the congestion control algorithm is within
the Linux TCP stack. DX algorithm is similar to the con-
ventional window-based proposals, with an additive increase
and a multiplicative decrease that’s proportional to the aver-
age queuing delay.

CAIA Delay Gradient [25] (CDG) proposes a delay gradi-
ent algorithm for TCP congestion control for wide-area net-
works. Its key goal is to figure out co-existence with loss
based congestion control. Hence the nature of its algorithms
are different from those in TIMELY.

Link-layer flow control is used for low-latency messag-
ing in Infiniband and Data Center Bridging (DCB) networks.
However, problems with Priority Flow Control (PFC), in-
cluding head of line blocking and pause propagation or

congestion spreading, are documented in literature [20, 36].
Some recent proposals aim to overcome these issues with
PFC using ECN markings to maintain low queue occupancy.
TCP-Bolt [14] uses modified DCTCP algorithm within the
kernel TCP stack. DCQCN [48] uses a combination of ECN
markings with a QCN-inspired rate-based congestion con-
trol algorithm implemented in the NIC. Evaluations demon-
strate that it addresses the HoL blocking and unfairness
problems with PFC, thus making RoCE viable for large-
scale deployment. TIMELY uses RTT signal, is imple-
mented in host software with support of NIC timestamping,
and is applicable to both OS-bypass and OS-based trans-
ports. Comparison of TIMELY and DCQCN in terms of
both congestion control and CPU utilization is an interest-
ing future work.

Congestion can also be avoided by scheduling transmis-
sions using a distributed approach [18,47] or even a central-
ized one [30]. However, such schemes are yet to be proven
at scale, and are more complex than a simple delay-based
approach.

Finally, load-sensitive routing such as Conga [13] and
FlowBender [11] can mitigate congestion hotspots by
spreading traffic around the network, thereby increasing
throughput. However, host-based congestion control is still
required to match offered load to the network capacity.

8. CONCLUSION
Conventional wisdom considers delay to be an untrust-

worthy congestion signal in datacenters. Our experience
with TIMELY shows the opposite – when delay is properly
adapted, RTT strongly correlates with queue buildups in the
network. We built TIMELY, which takes advantage of mod-
ern NIC support for timestamps and fast ACK turnaround to
perform congestion control based on precise RTT measure-
ments. We found TIMELY can detect and respond to tens of
microseconds of queueing to deliver low packet latency and
high throughput, even in the presence of infrequent RTT sig-
nals and NIC offload. As datacenter speeds scale up by an
order of magnitude, future work should focus on how effec-
tive RTTs continue to be for congestion control, alongside
rethinking the nature of delay based algorithms.

9. ACKNOWLEDGMENTS
We thank Bob Felderman, Ashish Naik and Philip Wells

whose participation and feedback made the work and this
submission possible. We thank Mike Marty, Joel Scherpelz,
and Dan Gibson for their direct contributions to this work;
Sridhar Raman, and Denis Pankratov for their contributions
to NIC pacing and hardware timestamps; Mike Ryan for ap-
plication benchmarks; Varun Gupta and Abdul Kabbani for
their insights on various congestion signals; Laurent Chavey
and Bill Berryman for their ongoing support of congestion
control work. We thank our shepherd, Mohammad Alizadeh,
and the anonymous reviewers for providing excellent feed-
back.
10. REFERENCES
[1] Chelsio T5 Packet Rate Performance Report.

http://goo.gl/3jJL6p, Pg 2.

549

[2] Data Center Bridging Task Group.
http://www.ieee802.org/1/pages/dcbridges.html.

[3] Dual Port 10 Gigabit Server Adapter with Precision
Time Stamping. http://goo.gl/VtL5oO.

[4] Gnuplot documentation. http://goo.gl/4sgrUU, Pg. 48.
[5] Mellanox for Linux. http://goo.gl/u44Xea.
[6] The NetFPGA Project. http://netfpga.org/.
[7] TSO Sizing and the FQ Scheduler.

http://lwn.net/Articles/564978/.
[8] Using Hardware Timestamps with PF RING.

http://goo.gl/oJtHCe, 2011.
[9] Who (Really) Needs Sub-microsecond Packet

Timestamps? http://goo.gl/TI3r1u, 2013.
[10] A. Kabbani et al. AF-QCN: Approximate Fairness

with Quantized Congestion Notification for Multi
tenanted Data Centers. In Hot Interconnects’10.

[11] A. Kabbani et al. FlowBender: Flow-level Adaptive
Routing for Improved Latency and Throughput in
Datacenter Networks. In ACM CoNEXT ’14.

[12] A. Singh et al. Jupiter Rising: A Decade of Clos
Topologies and Centralized Control in Google’s
Datacenter. In SIGCOMM’15.

[13] Alizadeh et al. CONGA: Distributed Congestion
aware Load Balancing for Datacenters. In SIGCOMM
’14.

[14] B. Stephens et al. Practical DCB for improved data
center networks. In Infocom 2014.

[15] B. Vamanan et al. Deadline-aware datacenter TCP
(D2TCP). In SIGCOMM ’12.

[16] Brakmo et al. TCP Vegas: new techniques for
congestion detection and avoidance. In SIGCOMM
’94.

[17] C. Lee et al. Accurate Latency-based Congestion
Feedback for Datacenters. In USENIX ATC 15.

[18] C.-Y. Hong et al. Finishing Flows Quickly with
Preemptive Scheduling. In SIGCOMM ’12.

[19] D.-M. Chiu and R. Jain. Analysis of the Increase and
Decrease Algorithms for Congestion Avoidance in
Computer Networks. Comput. Netw. ISDN Syst., 1989.

[20] D. Zats et al. DeTail: Reducing the Flow Completion
Time Tail in Datacenter Networks. In SIGCOMM ’12.

[21] J. Dean and L. A. Barroso. The Tail at Scale.
Communications of the ACM, 56:74–80, 2013.

[22] S. Floyd. TCP and explicit congestion notification.
ACM SIGCOMM CCR, 24(5), 1994.

[23] S. Floyd and V. Jacobson. Random early detection
gateways for congestion avoidance. IEEE/ACM Trans.
Netw., 1, August 1993.

[24] I. Grigorik. Optimizing the Critical Rendering Path.
http://goo.gl/DvFfGo, Velocity Conference 2013.

[25] D. A. Hayes and G. Armitage. Revisiting TCP
Congestion Control using Delay Gradients. In
Networking IFIP, 2011.

[26] D. A. Hayes and D. Ros. Delay-based Congestion
Control for Low Latency.

[27] C. Hollot, V. Misra, D. Towsley, and W.-B. Gong. A
control theoretic analysis of RED. In IEEE Infocom
’01.

[28] C. Hollot, V. Misra, D. Towsley, and W.-B. Gong. On
designing improved controllers for AQM routers
supporting TCP flows. In IEEE Infocom ’01.

[29] IEEE. 802.1Qau - Congestion Notification.
http://www.ieee802.org/1/pages/802.1au.html.

[30] J. Perry et al. Fastpass: A Centralized “Zero-Queue”
Datacenter Network. In SIGCOMM ’14.

[31] R. Jain, D. Chiu, and W. Hawe. A Quantitative
Measure of Fairness and Discrimination for Resource
Allocation in Shared Computer Systems. In DEC
Research Report TR-301, 1984.

[32] D. Katabi, M. Handley, and C. Rohrs. Internet
Congestion Control for Future High Bandwidth-Delay
Product Environments. In SIGCOMM’02.

[33] F. P. Kelly, G. Raina, and T. Voice. Stability and
fairness of explicit congestion control with small
buffers. Computer Communication Review, 2008.

[34] M. Al-Fares et al. A Scalable, Commodity Data
Center Network Architecture. SIGCOMM ’08.

[35] M. Alizadeh et al. Data center TCP (DCTCP). In
SIGCOMM ’10.

[36] M. Alizadeh et al. Data Center Transport Mechanisms:
Congestion Control Theory and IEEE Standardization.
In Annual Allerton Conference ’08.

[37] M. Alizadeh et al. Less Is More: Trading a Little
Bandwidth for Ultra-Low Latency in the Data Center.
In NSDI ’12.

[38] M. Alizadeh et al. Deconstructing datacenter packet
transport. In ACM HotNets, 2012.

[39] N. Dukkipati et al. Processor Sharing Flows in the
Internet. In IWQoS, 2005.

[40] K. Nichols and V. Jacobson. Controlling queue delay.
Queue, 10(5):20:20–20:34, May 2012.

[41] J. Postel. Transmission Control Protocol. RFC 793,
1981. Updated by RFCs 1122, 3168, 6093, 6528.

[42] S. Ha et al. CUBIC: A New TCP-Friendly High-Speed
TCP Variant. SIGOPS Operating System Review ’08.

[43] S. Radhakrishnan et al. SENIC: scalable NIC for
end-host rate limiting. In NSDI 2014.

[44] K. Tan and J. Song. A compound TCP approach for
high-speed and long distance networks. In IEEE
INFOCOM ’06.

[45] V. Vasudevan et al. Safe and effective fine-grained
TCP retransmissions for datacenter communication. In
SIGCOMM ’09.

[46] D. X. Wei, C. Jin, S. H. Low, and S. Hegde. FAST
TCP: Motivation, Architecture, Algorithms,
Performance. IEEE/ACM Trans. Netw., 2006.

[47] C. Wilson, H. Ballani, T. Karagiannis, and
A. Rowtron. Better never than late: meeting deadlines
in datacenter networks. In SIGCOMM ’11.

[48] Y. Zhu et al. Congestion Control for Large-Scale
RDMA Deployments. In SIGCOMM 2015.

550

