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ABSTRACT
Internet of Things leads to routing table explosion. An
inexpensive approach for IP routing table lookup is re-
quired against ever growing size of the Internet. We con-
tribute by a fast and scalable software routing lookup al-
gorithm based on a multiway trie, called Poptrie. Named
after our approach to traversing the tree, it leverages
the population count instruction on bit-vector indices
for the descendant nodes to compress the data struc-
ture within the CPU cache. Poptrie outperforms the
state-of-the-art technologies, Tree BitMap, DXR and
SAIL, in all of the evaluations using random and real
destination queries on 35 routing tables, including the
real global tier-1 ISP’s full-route routing table. Poptrie
peaks between 174 and over 240 Million lookups per
second (Mlps) with a single core and tables with 500–
800k routes, consistently 4–578% faster than all com-
peting algorithms in all the tests we ran. We provide
the comprehensive performance evaluation, remarkably
with the CPU cycle analysis. This paper shows the
suitability of Poptrie in the future Internet including
IPv6, where a larger route table is expected with longer
prefixes.
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1. INTRODUCTION
The fundamental functionality to support high speed

communications on the Internet are increasing in im-
portance with the ever-growing traffic size and due to
our daily life being highly dependent on the Internet.
One of the key technologies is IP routing table lookup:
It needs to be extremely fast since the peak traffic size
in an Internet core router is multiple hundreds of giga-
bits per second (Gbps). Ternary Content Addressable
Memory (TCAM) performs high speed IP routing ta-
ble lookup in the Internet core routers. However, de-
parture from a TCAM is an approach worth consid-
ering for the two reasons: First, TCAM has issues in
power consumption and heat. Second, the advent of
Network Functions Virtualization (NFV) [6] may make
the use of TCAM impossible, since the virtualized net-
work functions are currently implemented in software
without TCAMs. Therefore, it is desired to implement
a software high-speed IP router only with general pur-
pose computers; i.e., personal computers (PCs), or com-
mercial off-the-shelf (COTS) devices.

For a long period of time, IP routing table lookup
has been the bottleneck [11] in the performance of the
software IP forwarding using COTS devices. It is a
challenging problem [34, 31] because: 1) the size of the
routing table is large and keeps growing (the number of
BGP full routes is beyond 500K), 2) it requires a specific
compute-intensive processing step called “longest prefix
matching,” and 3) high-speed communication links re-
quire high speed processing (148.8 million lookups per
second (Mlps) for wire-rate IP packet forwarding on 100
Gigabit Ethernet (GbE) of minimum-size packets).

Recently, we see a significant improvement in the per-
formance of software routers. There are two approaches;
one is expecting the use of specific hardware such as
graphics processing unit (GPU). Such hardware inher-
its, however, similar issues that TCAM has, such as heat
and power consumption. The other is a pure software
algorithm approach, where we assume the use of the
commodity CPUs. A trend of this approach is reducing
the memory footprint of the data structure of IP rout-
ing table to maximize the benefit of CPU cache [38,
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25]. Still, the required performance to accommodate
multiple of 100 GbE links has not been achieved.

We propose a novel data structure for fast and scal-
able IP routing table lookup, called Poptrie. It builds
on the 64-ary multiway trie, allowing a low number of
steps to search in the tree. It implements the descen-
dant node array using a 64-bit vector, leading to the
small memory footprint, and enabling a quick check of
the descendant nodes. By the use of population count
instruction on the bit vector, unnecessary descendant
nodes are omitted efficiently, and a quick jump to the
corresponding descendant node becomes feasible. Since
Poptrie lays the descendant internal and leaf nodes in
a contiguous array, the indirect index of smaller size is
achieved, greatly reducing the memory footprint of the
entire data structure. Poptrie also supports efficient in-
cremental update without blocking the IP routing table
lookup process.

We show, by the comprehensive evaluation in this pa-
per, that Poptrie is promising with the friendliness to
the larger routing table with longer prefixes of the fu-
ture Internet, including IPv6. Compared to three state-
of-the-art technologies, Poptrie gives superior perfor-
mance in all evaluations for random and real destination
queries on 35 instances of routing tables. It runs in 241
Mlps (1.34 times speed up from the fastest alternative,
DXR [38]) even with a single CPU core on a real routing
table instance of a global tier-1 ISP’s core router, and it
can achieve 914 Mlps with four CPU cores. Also, we an-
alyze the consumed CPU cycles per lookup and showed
the differences between other lookup technologies and
Poptrie. One contribution of Poptrie is the scalability
against future routing table growth. We show that Pop-
trie performs 175 Mlps on a synthetic table with more
than 800K routes where DXR slows to 104 Mlps and
SAIL [36] does not work.

The rest of this paper is organized as follows. In Sec-
tion 2 we see related past studies. We describe the pop-
trie algorithm in Section 3. Section 4 gives the evalua-
tion, where we describe the routing table dataset, how
we generate the destination address for queries in the
benchmark test, performance comparison, an analysis
of the number of CPU cycles, scalability comparison
for large routing tables, update performance evaluation,
and performance comparison for the IPv6 routing ta-
bles. After miscellaneous discussions are given in Sec-
tion 5, we conclude in Section 6.

2. RELATED WORK
TCAM has been a common technology for routing

table lookup for a long time [23, 37, 39]. However,
TCAM has problems with its power consumption, heat,
monetary cost, and scalability issues [4, 16]. Bando et
al. [4] proposed an FPGA-based routing table lookup
engine, called FlashTrie, that can provide 200 Mlps per
engine. Another approach to achieve fast IP routing
table lookup is relying on GPUs [14]. Although GPU-

based technologies like GPU-Click [32] and GAMT [21]
are as fast as 500 Mlps, they require power-consuming
GPUs, and need to process packets in large batch sizes.
The large packet batch size is likely to lead to the higher
worst case packet forwarding latency, and jitters.

Departing from dedicated hardware, there have been
studies to achieve high performance IP routing on COTS
devices. Click [19] is a modular software router that en-
ables fast packet I/O (for the era), and RouteBricks [10]
advanced the model further. Rizzo focuses on speeding
up the packet I/O in Unix systems [26], in virtual ma-
chines [28], and in virtual switches [27]. The emergence
of NFV [6] makes the fast IP routing lookup more im-
portant in producing a software router implementation
with these fast packet I/O technologies on COTS de-
vices.

The radix tree [29, 7, 18] and Patricia trie [24, 30]
are fundamental data structures for the longest prefix
match. In general, they require some tens of memory
accesses for each IP routing table lookup, which result in
low lookup performance. Waldvogel et al. [34] reduced
the memory access both for IPv4 and IPv6 routing table
lookup using binary search on prefix length. Gupta et
al. [13] focused on the distribution of the prefix length
in the routing table that most of the prefixes are no
longer than /24. They proposed the DIR-24-8-BASIC
data structure that extracts each /24 or shorter prefix
into /24 prefixes to provide the lookup algorithm with
O(1) for these entries.

There are studies that utilize bloom filters [9], mem-
ory pipelining [5, 15, 20], and bitmaps in the tree [11]
to solve these problems, but these technologies fail to
provide either a good performance or a reasonable man-
agement cost.

The Lule̊a algorithm [8] was proposed to reduce the
memory footprint for the routing table. Srinivasan et
al. [31] had taken into account data cache and optimized
the data structure to improve the cache efficiency. Tree
BitMap [11] provides a succinct data structure of a mul-
tiway trie. The prefix and the descendant nodes in a
Tree BitMap node are represented by two bitmaps and
the pointers to a contiguous array of data. It uses the
population count operation in a similar way to Pop-
trie. In our tests, even in the most favourable situa-
tion Tree BitMap only achieved 1/3 of the performance
of other modern algorithms. Section 4.5 discusses its
perfromance in more detail. Rétvári et al. [25] pro-
posed a compression algorithm of the forwarding infor-
mation base (FIB) table to maximize the advantage of
the data cache. However, a smaller FIB table does not
always give a good lookup performance. For example,
their algorithm consumes 194 CPU cycles per IPv4 ad-
dress lookup, thus the lookup rate is only 12.8 Mlps.
This is because the depth of their data structure can
grow as much as 21. The approach proposed by Zec
et al. [38], called DXR, achieved high lookup rate (100
Mlps per CPU core) by taking advantage of cache effi-
ciency. DXR transforms the prefixes in the routing table
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into an array of address ranges, and searches the range
array based on the key address using the binary search.
It then introduces a lookup table similar to DIR-24-8-
BASIC to optimize the lookup performance for shorter
prefixes. The bottleneck of their approach, however, is
the binary search for longer prefixes.

Yang et al. have proposed yet another fast IP rout-
ing table lookup algorithm called SAIL [36]. Their ap-
proach reduces the number of memory access and in-
structions in the lookup algorithm by splitting the pro-
cedure into three levels. Yet, the memory footprint
of SAIL exceeds the typical CPU cache size, requiring
relatively slow DRAM access in case of cache misses.
Therefore, the performance of SAIL relies on the desti-
nation IP address locality of the traffic pattern. More-
over, SAIL does not support future growth of the rout-
ing table due to its structural limitation as discussed in
Section 4.8.

3. POPTRIE
We propose a new data structure called Poptrie for

fast IP routing table lookup. We assume that Poptrie
is only used to look up a FIB index for the purpose
of deciding the next hop during the IP forwarding; the
routes are preserved in a separate routing table (RIB:
Routing Information Base) such as radix or Patricia trie
so that we can aggressively compress routes having the
same next hop. In this section, we describe how Pop-
trie works. In general, we can aggregate the routes that
are ingested from the RIB to the FIB by removing the
redundant prefixes that do not influence the lookup re-
sult. This aggregation, called in this paper the “route
aggregation”, is not our contribution, and is applicable
to other lookup technologies as well. The route aggre-
gation performs merger of a set of prefixes with the
identical next hop that belong to a subtree without any
gap, into the single prefix representing the whole sub-
tree. Unless otherwise noted, the performance results
of Poptrie shown in this paper are with the route ag-
gregation option.

Poptrie is extended from the multiway trie (i.e., M -
way or M -ary where M = 2k). Each node holds 2k

elements in the descendant array, corresponding to the
value of the k-bit chunk in the key IP address. An
element in the descendant array points to its next-level
child internal node or a leaf node holding an index to
the corresponding FIB entry. Although we selected k =
6 for our implementation to fit the size of registers of
the 64-bit CPU architecture, we illustrate the k = 2
case in this section for the sake of brevity. The 2k-ary
multiway trie where k = 2 is illustrated in Figure 1. The
admirable performance of Poptrie is due to the small
memory footprint so that it can be contained completely
within the CPU cache, and yet it leverages the effective
multiway branching to reduce the total number of steps
that is necessary to search down the tree.

We describe the options in Poptrie step by step; the
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Figure 1: The 2k-ary multiway trie (k = 2).

basic mechanism in Section 3.1, the lookup algorithm
in Section 3.2, the leafvec extension to compress the leaf
size in Section 3.3, and the additional options called di-
rect pointing in Section 3.4. The internal node in the
basic poptrie contains vector (8 bytes), base0 (4 bytes),
and base1 (4 bytes). Hence the total size of an internal
node is only 16 bytes. When we use the leafvec exten-
sion, it takes 8 bytes additionally, so the internal node
size becomes 24 bytes. In our implementation, the con-
tiguous arrays of internal and leaf nodes are managed
by the buddy memory allocator [17].

3.1 Basic Mechanism
First, the descendant array in the multiway trie is

changed to a bitwise array (i.e., a bit vector). The vector
and the base1 collectively serve as the descendant array.
The vector is a bit-vector index of the length 2k bits,
for the current k-bit address chunk. The n-th bit in the
vector corresponds to the child node with the value n in
the current k-bit address chunk. Each bit in the vector
indicates the type of the corresponding child node: the
bit is set to 1 if the corresponding child is an internal
node, and it is set to 0 if the corresponding child is a leaf
node. In other words, the vector indicates the existence
of the corresponding descendant internal node, and then
if there is no descendant internal node, the search will
always result in a leaf node at this level of the tree.

The necessary descendant internal or leaf nodes are
placed so that they form a contiguous array. The ar-
ray starts with the descendant node which corresponds
to n = 0, in the ascending order up to n = 63 when
k = 6. However, unnecessary nodes (i.e., descendant
internal or leaf nodes that are not pointed from the
node) are skipped; if the node corresponds to n = 0
is not necessary, the array can start with n = 1, with
corresponding bits in vector properly set. This way, un-
necessary descendant nodes which do not have branches
or leaf information are omitted, allowing compact data
structure size and efficient use of memory.

The next node in the search within the tree can be ob-
tained as follows: Since the value n of the current k-bit
address chunk corresponds to the n-th bit in the vector,
the number of 1s in the least significant n+1 bits of the
vector can be used as the index of the next node within
the current internal node’s descendant array. Here, we
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Figure 2: The vector in the internal node is con-
figured so that the bit-1 indicates a descendant
node, and the bit-0 indicates a leaf node.

can utilize the popcnt CPU instruction to accelerate the
calculation of the next node in the search procedure, as
described later in Section 3.2. Since vector bit-vector
only provides the indirect address (i.e., index) within
the current descendant array, it is necessary to provide
the starting point of the descendant array. The base1
is the base index to the consecutive subsequence of the
internal nodes that are the children of this node. Simi-
larly, the indirect index of the leaf node is obtained by
counting the 0s in the vector. The starting offset for the
leaf node is contained in base0. Figure 2 illustrates an
example of the indirect index of internal and leaf nodes
with vector, base1, and base0.

3.2 Lookup Algorithm
The lookup algorithm steps down the tree according

to the specified IP address like the normal 2k-ary mul-
tiway trie. At the depth of d, the d-th chunk of the
address is used as the index of the vector in the inter-
nal node. Let the value of the d-th chunk in the key
address be n, and then the lookup at the depth of d
is executed as follows: If the corresponding bit is one,
then the lookup algorithm continues to the next depth.
The index of the next internal node in the descendant
array is computed by adding to the base1 the number
of 1s in the least significant n + 1 bits of the vector mi-
nus 1. If the corresponding bit is zero, then the lookup
algorithm finishes the lookup with returning the leaf.
The index of the leaf node in the leaf array is computed
by adding to the base0 the number of 0s in the least
significant n + 1 bits of the vector minus 1.

The key point in Poptrie is the use of the instruction
to count the number of 1s and 0s in a bit string. Those
counts are used as the indirect index of the descendant
node and the leaf node, respectively. The procedure of
counting the number of 1s in a bit string is called “pop-
ulation count”, and an instruction executing it, popcnt,
has been implemented in the x86 processor’s instruction
set. When the popcnt CPU instruction is not available,
a fast alternative can be found in the literature [35].

The lookup algorithm with k = 6 is shown in Al-
gorithm 1. The algorithm takes the poptrie structure t
and the IP address key as input, and returns the longest
matching leaf. In t, there are the internal node array

Algorithm 1 lookup(t = (N , L), key); the lookup
procedure for the address key in the tree t (when k =
6). The function extract(key, off, len) extracts bits of
length len, starting with the offset off, from the address
key. N and L represent arrays of internal nodes and
leaves, respectively. � denotes the shift instruction of
bits. Numerical literals with the UL and ULL suffixes
denote 32-bit and 64-bit unsigned integers, respectively.
Vector and base are the variables to hold the contents
of the node’s fields.
1: index = 0;
2: vector = t.N [index].vector;
3: offset = 0;
4: v = extract(key, offset, 6);
5: while (vector & (1ULL � v)) do
6: base = t.N [index].base1;
7: bc = popcnt(vector & ((2ULL � v) - 1));
8: index = base + bc - 1;
9: vector = t.N [index].vector;

10: offset += 6;
11: v = extract(key, offset, 6);
12: end while
13: base = t.N [index].base0;
14: bc = popcnt((∼t.N [index].vector) & ((2ULL � v) - 1));
15: return t.L[base + bc - 1];

N , and the leaf array L. In Line 1 the index is set to 0
to access the root node. Line 2 accesses to the vector of
the root node. In Line 4, we obtain the value of the first
6-bit chunk from the offset 0. Lines 5–12 are the main
loop that continues as long as there is a corresponding
descendant internal node (checked in Line 5). Line 7
gets the population count of set bits in the least sig-
nificant v + 1 bits and store it in bc. The next node’s
index is calculated (Line 8), the next node’s vector is
prepared (Line 9), and the chunk is shifted by 6 bits for
the next round (Line 10, 11). Lines 13–15 calculate the
indirect index of the corresponding leaf, and returns the
content.

3.3 Compression with the Leaf Bit-Vector
The prefix expansion described in the previous sub-

section yields many duplicate and redundant leaves. In
the ordinary 2k-ary multiway trie, an identical FIB en-
try corresponding to a shorter prefix may redundantly
span to multiple leaves within an internal node, up to
2k−1 leaves. For example when k = 6, an internal node
can have a next hop of value A and 63 next hops of value
B, in its 64-length leaf array. In this way, the redun-
dant leaves (B in this example) can consume significant
memory.

In order to avoid them, leafvec is introduced in the
poptrie internal node. Leafvec is a bit vector that in-
dicates the starting points of the identical, contiguous
leaf ranges within the leaf array. It is a key technique to
keep the memory footprint of Poptrie small, and reduces
more than 90% of leaves as we will see in Section 4.3.
The leafvec and base0 collectively serve as the base and
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Figure 3: Merging identical leaf nodes with ig-
noring a hole punching using the leafvec

Algorithm 2 The leaf compression algorithm; the dif-
ferences from the Algorithm 1. Only Line 14 is substi-
tuted.
14: bc = popcnt(t.N [index].leafvec & ((2ULL � v) - 1));

the indirect index to locate the leaf node, which is sim-
ilar to the vector and base1 described in the previous
section. The indirect index using the leafvec and base0
omits the redundant information as long as the redun-
dant leaf slots are contiguous. For example, if all the 64
leaf slots in an internal node contains the same value,
then it can be compressed to just one leaf slot with only
the least-significant bit in the leafvec being 1. The in-
direct index for the leaf that corresponds to the value
n for the current chunk is calculated as the number of
1s in the least-significant n + 1 bits in the leafvec. This
way, all the indirect indices for any value n fall into the
first leaf slot, making the efficient memory compression.

Another benefit of this mechanism lies when hole
punching occurs. Hole punching is an event such that
a longer prefix divides a shorter prefix’s address space,
necessitating the routing table to deal with the address
space as three distinct divisions1. Generally hole punch-
ing prevents the leaves from being contiguous, disabling
the aforementioned efficient leaf compression. However,
in Poptrie, the contiguity is recovered by making the
leaf slot irrelevant if there is a descendant internal node
that corresponds to the leaf slot. The lookup algorithm
checks always the existence of the descendant internal
node first, and if there is one, the lookup never tracks
back from the lower level to the current level. Hence
the leaf slot with a corresponding descendant internal
node is defined as irrelevant, and is set to 0. Then, we
may make the leaf slot contiguous again, ignoring those
leaf slots with corresponding descendant internal node,
as shown in Figure 3.

The modification in the algorithm is shown in Algo-
rithm 2. Only the Line 14 is changed from Algorithm 1
so that it checks the newly introduced leafvec field to
compute the corresponding leaf index. An example of
the lookup procedure using leafvec is illustrated in Fig-

1Refer to Freedman et al. [12] for further definition of
hole punching.

Figure 4: An example of the data structure of
Poptrie where k = 2, and the lookup procedure
for 0110b.

ure 4; an 8-bit address 01100111b is searched as follows:
(a) It takes the first two bits (01b) from the address, and
then picks the bit corresponding to this index (the sec-
ond bit from the right). (b) It finds the base address of
the next subsequence of internal nodes using the base1
member. (c) It counts the number of 1s in the least sig-
nificant two bits of the vector member minus 1 (= 1),
and finds the next internal node. (d) It takes the sec-
ond two bits from the address (10b), and then picks the
bit corresponding to this index (the third bit from the
right). The bit is 0 in vector, so the search switches to
find a leaf. (e) It finds the base address for the corre-
sponding leaf nodes from base0 (128). (f) It counts the
number of 1s in the least significant three bits of the
leafvec minus 1 (= 0), and finally finds the leaf node.

3.4 Direct Pointing
Although efficient in memory space, the tree structure

in general is not sufficient in search speed, especially in
our problem. As we will see later in Section 4.1, most
prefixes in the real datasets are distributed in the range
of prefix length from /11 through /24. This means
that, for most IP addresses, the lookup algorithm of
any tree structure will always need to traverse at least
some internal nodes to reach to a leaf node, incurring
some expensive memory accesses. This extra process
can be omitted and alternatively be finished in O(1) if
we employ an additional array as a lookup table, at the
expense of more memory consumption. These days, it
is common to conduct such an optimization technique;
examples can be seen in DIR-24-8-BASIC, DXR and
SAIL. In Poptrie, we call this optimization“direct point-
ing”. It is illustrated in Figure 5.

Direct pointing extracts the nodes (either internal or
leaf) that corresponds to the most significant s bits to
an array of length 2s. Here, the s variable specifies how
many most significant bits should be used as the index
of the array. The index is called “direct index”, and the
value of the most significant s bits of the key address, n,
is used as the direct index. It enables us to jump directly
to the corresponding FIB entry or internal node, by
accessing the n-th element in the top-level array. In
our implementation, the most significant bit indicates
whether the direct index points to a FIB entry or an
internal node; if it is set, the remaining bits constitute
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Figure 5: Direct pointing (k = 6, s = 12).

Algorithm 3 The direct pointing algorithm; the differ-
ences from Algorithm 1. Line 1 and 2 in Algorithm 1
are replaced with the statements below.

1: index = extract(key, 0, t.s);
2: dindex = t.D[index].direct index;
3: if (dindex & (1UL � 31)) then
4: return dindex & ((1UL � 31) - 1);
5: end if
6: index = dindex;
7: offset = t.s;

an index that points to a FIB entry directly. Otherwise,
the direct index points to the internal node and further
search is necessary. Since we used the direct index of 4
bytes length, it increases the memory footprint by 4×2s

bytes at maximum. The modifications to Algorithm 1
are shown in Algorithm 3.

3.5 Incremental Update
Although compilation time of Poptrie from scratch,

i.e., rebuilding the data structure entirely from the RIB,
is short (less than 70 milliseconds as shown later in Ta-
ble 2), it is generally desired to have a way to quickly
update the FIB incrementally. The incremental update
of Poptrie is performed by replacing only the updated
part of the trie.

Blocking the read access to Poptrie using write lock
is not acceptable because it blocks IP forwarding pro-
cess for a considerable amount of time. Hence, we opt
for a lock-free approach for the incremental update in
Poptrie. In either way, the data structure must be kept
consistent all the time. The strategy here is to let the
IP forwarding process keep referring to the current (i.e.,
older) FIB while the construction of the updated FIB is
ongoing. When the update is finished, the current FIB
is switched to the new one, by changing the pointer
or the index of the FIB using an atomic instruction.
Since the FIB lookup is read-only procedure and we as-
sume the single-threaded update operation, the atomic
instruction can ensure the consistency.

Poptrie is a data structure to provide the FIB com-
piled from a RIB. Suppose the RIB is maintained by

Figure 6: The lock-free update procedure to the
internal node.

a binary radix tree. To support the partial update of
Poptrie, we add a mark (i.e., a flag) to the radix node
indicating that this node needs updating. The internal
and leaf nodes of Poptrie corresponding to the marked
radix nodes are replaced with new ones. The update
procedure of the data structure of Poptrie consists of
the following three steps. 1) When a prefix is updated,
each radix tree’s node of which next hop changes is
marked by traversing the subtree. 2) Poptrie constructs
the subtree with new descendant internal nodes and leaf
nodes from the lowest level of the tree, reusing the inter-
nal nodes and leaves corresponding to the non-marked
radix nodes. When a Poptrie node consists of only one
leaf covering all the range, and it does not hold any
descendant node, the node is removed and the leaf is
brought to the upper level by clearing the correspond-
ing bit in vector of the upper level internal node. The
procedure continues until the leaves cannot be brought
to the upper level any more. 3) The root of the af-
fected subtree needs to be replaced. When neither of
the root’s vector nor leafvec change, then we can re-
place the root’s node array (base1) or leaf array (base0)
to a newly constructed array, with an atomic instruc-
tion. Otherwise, when the root’s vector and/or leafvec
change, we replace the entire node array that includes
the root node (in other words, the node array that is
pointed from the parent of the root). This is illustrated
in Figure 6. We allocate a new node array for the cur-
rent array and rebuild it, and finally base1 of the parent
is replaced with an atomic instruction. Note that our
buddy memory allocator implementation mitigates the
memory fragmentation in allocating a contiguous array.

The update of Poptrie with direct pointing is per-
formed as follows. If the depth of the top marked node
in the radix tree equals or is greater than s, the in-
cremental update follows the same way without direct
pointing, as described above. If the depth of the top
marked node is less than s, the entire top-level array of
2s entries needs to be replaced.

After the completion of the update procedure, the
unused memory space, i.e., the replaced part, is freed
after ensuring no lookup procedure is referring to it.
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Table 1: RIB Datasets; the name, number of prefixes, and number of distinct next hops.

Name # of # of Name # of # of Name # of # of
prefixes nhops prefixes nhops prefixes nhops

RV-linx-p46 † 518,231 308 RV-saopaulo-p12 ‡ 516,536 510 RV-singapore-p3 † 518,620 136
RV-linx-p50 † 512,476 410 RV-saopaulo-p13 ‡ 517,914 504 RV-singapore-p5 † 516,557 129
RV-linx-p52 † 514,590 419 RV-saopaulo-p16 † 521,405 528 RV-sydney-p0 † 520,580 122
RV-linx-p57 † 514,070 142 RV-saopaulo-p18 ‡ 521,874 522 RV-sydney-p1 † 515,809 125
RV-linx-p60 † 508,700 70 RV-saopaulo-p2 ‡ 523,092 530 RV-sydney-p3 † 517,511 115
RV-linx-p61 † 512,476 149 RV-saopaulo-p20 ‡ 523,574 470 RV-sydney-p4 † 519,246 86
RV-nwax-p1 † 519,224 60 RV-saopaulo-p23 ‡ 523,013 517 RV-sydney-p9 † 523,400 127
RV-nwax-p2 † 514,627 46 RV-saopaulo-p25 ‡ 532,637 523 RV-telxatl-p3 ‡ 511,161 56
RV-nwax-p5 † 519,195 49 RV-saopaulo-p26 ‡ 516,408 479 RV-telxatl-p6 ‡ 519,537 42
RV-paixisc-p12 † 519,142 68 RV-saopaulo-p8 ‡ 522,296 477 RV-telxatl-p7 ‡ 513,339 49
RV-paixisc-p14 † 524,168 49 RV-saopaulo-p9 ‡ 515,639 507
REAL-Tier1-A ∗ 531,489 13 SYN1-Tier1-A 764,847 45 SYN2-Tier1-A 885,645 87
REAL-Tier1-B ∗ 524,170 9 SYN1-Tier1-B 756,406 19 SYN2-Tier1-B 876,944 33
REAL-RENET � 516,100 32

† Snapshot of 2014-12-17 00:00 UTC, ‡ Snapshot of 2014-12-16 23:00 UTC, ∗ Obtained on Jan. 9, 2015, � Obtained on Jan. 3, 2015.

4. EVALUATION
We evaluate the performance of the proposed lookup

algorithm2 using BGP routing tables (described in Sec-
tion 4.1). We compare Poptrie with the binary radix
tree, Tree BitMap [11], DXR (D16R and D18R) [38]
and SAIL (SAIL L) [36]. We implemented these al-
gorithms ourselves, and validated their correctness by
comparing all lookup results of all algorithms for each
address of the whole IPv4 space. For fair comparison
with Tree BitMap and Poptrie, we use the popcnt in-
struction rather than the lookup table used in the orig-
inal Tree BitMap implementation.

We use a computer equipped with an Intel(R) Core
i7 4770K (3.9 GHz, 8 MiB cache) and 32 GB DDR3-
1866 for the experiments. The latencies3 of L1, L2, L3
cache, and DRAM access are 4-5 cycles, 12 cycles, 36
cycles, and 36 cycles plus Column Address Strobe la-
tency, respectively. The size of L1, L2, and L3 cache
are 32 KiB, 256 KiB, and 8MiB, respectively. All eval-
uations are conducted ten times on the Ubuntu 14.04
server (x86 64) on this computer, except for the CPU
cycle analysis in Section 4.6.

4.1 Datasets
Table 1 summarizes the routing table datasets we use

in this paper. The dataset name starts with the prefix
‘RV’ indicates the dataset is obtained from the Route-
Views public BGP RIB archives [33]. We omit datasets
that do not resemble a core router’s RIB by filtering
out the datasets with only one next hop, or with rout-
ing table size less than 500K. 32 datasets are obtained;
the second and the third segments in the dataset name
represents the archive name and the peer number, re-
spectively. For example, RV-linx-p46 is the 46th4 peer
in the linx RIB snapshot in the RouteViews archives.

2The reference implementation of Poptrie is available
at https://github.com/pixos/poptrie.
3reported at http://www.7-cpu.com/cpu/Haswell.
4with zero-based numbering.

The datasets whose name starts with the prefix
‘REAL’ are the real routing tables that are obtained
from ISP’s routers in operation. The key difference
between the real and the RouteViews RIB datasets is
that the real ones contain routes exchanged via Interior
Gateway Protocols (IGPs). These longer prefixes cause
the lookup technology to search down to a deeper level
of the tree, as we will see later. REAL-Tier1-A is the
routing table obtained from a real core backbone router
in a global tier-1 ISP. REAL-Tier1-B is obtained from
a national backbone router in the same ISP. REAL-
RENET is obtained from a router in a research and
educational network of WIDE Project [1].

To test the scalability of our technology against fu-
ture routing table growth, we created two types of syn-
thetic routing tables containing more than 700K entries,
by extending REAL-Tier1-A and REAL-Tier1-B. The
first type, whose name starts with ‘SYN1’, is created by
the following procedure: Each prefix that is no longer
than /24 and /16 is split into two and four prefixes,
respectively. The second type, whose name starts with
‘SYN2’, is created by the following procedure: Each
prefix that is no longer than /24, /20, and /16 is split
into two, four, and eight prefixes, respectively. Each
split prefix is assigned a different next hop systemati-
cally; the i-th split prefix has the next hop n + i where
n is the original next hop. Note that the next hop n+ i
did not overlap any existing next hops in the original
datasets. These synthetic datasets are more challeng-
ing environments because they have a larger number
of route entries, and the aggregation of leaf nodes be-
comes more difficult due to the distinct next hop values
derived from the assignment policies.

It is worth noting that in general, the number of bits
checked in the longest prefix matching is larger than the
prefix length of individual routes. This is due to the
other longer prefixes within the prefix in the address
space. We call the number of bits (equivalently, the
depth to search in the binary radix tree) that is neces-
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Table 2: The compilation time, the number of nodes, the memory footprint, and the lookup rate for
random with direct pointing (s = 0, 16, 18).

Name and options s # of inodes # of leaves Mem. [MiB] Compilation (std.) [ms] Rate (std.) [Mlps]

Radix – – – 30.48 – 8.82 (0.05)

Poptrie (basic) 0 64,009 4,032,568 8.67 31.07 (0.45) 87.71 (1.65)
without route aggregation 16 172,101 10,862,901 23.60 64.18 (0.33) 130.72 (1.72)

18 61,282 3,911,422 9.40 36.06 (1.14) 170.69 (2.92)

Poptrie (leafvec) 0 64,009 280,673 2.00 32.60 (1.25) 89.15 (1.59)
without route aggregation 16 172,101 347,449 4.85 62.97 (0.20) 154.33 (1.53)

18 61,282 265,320 2.91 33.37 (0.25) 191.95 (1.67)

Poptrie 0 43,191 263,381 1.49 32.84 (0.29) 96.27 (1.84)
16 86,171 274,145 2.75 65.91 (0.35) 198.28 (5.29)
18 40,760 245,034 2.40 33.24 (0.24) 240.52 (5.47)
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Figure 7: The heat map of the binary radix
depth for all 232 IPv4 addresses on REAL-Tier1-
A. x-axis is the matched prefix’s prefix length.
y-axis is the length of checked bits.

sary to decide the resulting longest matching prefix “bi-
nary radix depth”. The binary radix depth is possibly
deeper than the prefix length as shown in Figure 7. We
see a number of cases where deeper search is required
to decide the shorter longest matching prefix. For ex-
ample, there are many cases where it is necessary to
search down to the 24th level to decide that the match-
ing prefix is only /8. This influences the performance
of lookup technologies shown in the later sections.

4.2 Traffic Patterns
We take the following traffic patterns into considera-

tion for the lookup performance evaluation: random,
sequential, repeated, and real-trace. The first three
are synthetic ones, and the last one is real traffic.

For random traffic pattern, 232 random IP addresses
are generated using xorshift [22]. If we prepare an ar-
ray of random numbers on memory in advance, the data
structure may be pushed out from the cache. In order
to minimize this cache pollution, each random number
is generated just before the lookup routine using the
xorshift, which allocates only four 32-bit variables.
The measured average overhead of the random number
generator was 1.22 nanoseconds per generation. Note

that we did not exclude this overhead from the re-
sults. For sequential, 232 addresses from 0.0.0.0 to
255.255.255.255 are queried sequentially. Sequen-
tial represents the traffic with spatial and temporal lo-
cality. Technologies tend to show better performance
for sequential because of the absence of random num-
ber generation, and the higher possibility of cache hit
in searching down the same part of the tree. Repeated
is similar to random except that each random number
address is repeated 16 times (total 16×232 lookups). It
represents the traffic with high temporal locality.

Real-trace is a real Internet traffic trace [2], cap-
tured on December 16, 2014, for 15 minutes. The trace
was captured on a transit link of the same AS border
router that produced the REAL-RENET RIB dataset.
We excluded an IP address that probes the entire IPv4
address space with a large amount of experimental ICMP
packets5. The packets accounted for 24.4% of the total
IPv4 packets in the trace. The number of IPv4 pack-
ets in this trace (after the filtering) is 97,126,495 with
644,790 distinct destination IPv4 addresses. In the eval-
uation, we load all the destination IP addresses of real-
trace into an array in memory in advance, and issue the
lookup queries one by one in sequence.

4.3 Effect of Extensions in Poptrie
We first evaluate the effectiveness of the extensions

and the design options of Poptrie. They are labeled“ba-
sic” (Section 3.1), “leafvec” (Section 3.3), and “s” (the
parameter for direct pointing, described in Section 3.4).
Using REAL-Tier1-A, we measured the number of in-
ternal nodes (labeled “# of inodes”), the number of leaf
nodes (“# of leaves”), the memory footprint, the compi-
lation time to construct Poptrie from the binary radix
tree, and the average lookup performance. The results
are summarized in Table 2. Note that Poptrie without
direct pointing is represented as s = 0.

The leaf compression by the leafvec reduced the mem-
ory footprint by 69–79% for s = 0, 16, 18, and addition
of the route aggregation option reduces the memory
footprint by 74–88% compared to Poptrie (basic). They

5USC ANT project: http://www.isi.edu/ant/address/
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Figure 8: The aggregated lookup rate by the
number of threads on the four core CPU.

effectively reduce the memory footprint, leading to the
increased lookup rate. Poptrie with s = 18 doubles the
lookup rate with less than 1 MiB memory increase com-
pared to s = 0, without increasing the compilation time.
Hereafter, we denote Poptrie with s = x by Poptriex.

In this paper, we choose 16 or 18 as the value of s to
conduct a fair comparison, since SAIL and DXR expand
in those bit lengths. Another reason for s = 18 is to
make the poptrie nodes aligned properly with the pre-
fix length of /24, since the /24 prefixes are the longest
and also the largest number of prefixes in the BGP rout-
ing domain. s = 18 allows Poptrie to require only one
internal node traversal (which corresponds to proceed-
ing by 6 bits) for the /24 prefixes, with an acceptable
memory footprint increase.

4.4 Expectation in Multi-Core
Modern CPUs commonly implement multiple cores

in a single CPU. Therefore, it is still worth evaluating
the performance using multiple CPU cores, to indicate
how much aggregated performance we can get from a
single CPU. Note that the scheduling architecture to
distribute packets into multiple CPU cores is beyond
the scope of this paper.

Figure 8 presents the aggregated lookup rate of
Poptrie18 against the number of threads for REAL-
Tier1-A and REAL-Tier1-B. Obviously the data struc-
ture of Poptrie can be shared among threads, and hence
multithreading does not increase memory footprint. Fur-
thermore, the shared cache has enough bandwidth to
execute the lookup algorithm in parallel. Therefore,
the lookup rate of Poptrie can be linearly scaled up to
the number of CPU cores.

4.5 Comparison with Other Algorithms
In this section, we compare the performance of Pop-

trie with Tree BitMap [11], SAIL [36] and DXR [38],
for three synthetic traffic patterns; random, sequen-
tial, and repeated, to demonstrate the advantage of
Poptrie.

We first compare the performance for the random

Table 3: The memory footprint and lookup rate
for random of each algorithm.

REAL-Tier1-A REAL-Tier1-B

Algorithm Mem. Rate Mem. Rate
[MiB] [Mlps] [MiB] [Mlps]

Radix 30.48 8.82 29.34 8.92
Tree BitMap 2.62 56.24 2.54 62.13
Tree BitMap (64-ary) 3.10 61.61 2.89 68.82
SAIL 44.24 158.22 42.62 159.39
D16R 1.16 116.63 0.93 114.30
D18R 1.91 179.92 1.71 168.80
Poptrie0 1.49 96.27 1.32 92.99
Poptrie16 2.75 198.28 1.87 191.83
Poptrie18 2.40 240.52 2.25 218.97

traffic pattern. Figure 9 shows the lookup performance
of Radix, Tree BitMap, SAIL, D16R, Poptrie16, D18R,
and Poptrie18 for all of the 35 routing table instances
from the RouteViews and the real datasets. The av-
erage lookup rate and the standard deviation of ten
experiments are shown using the error bars. Poptrie
outperforms all other lookup algorithms in the average
lookup rate for all of these 35 RIB datasets; Poptrie18
is 24.5–46.1, 3.52–6.78, 1.37–2.62, and 1.04–1.34 times
faster than Radix, Tree BitMap, SAIL, and D18R, re-
spectively. There are five RIB datasets where Poptrie16
outperforms Poptrie18 (e.g., RV-saopaulo-p2). We in-
vestigated that, for these RIB datasets, the route aggre-
gation reduced a large number of prefixes that are more
specific than /16, and consequently, Poptrie16 achieved
better performance than Poptrie18 through the signifi-
cant reduction of the memory footprint.

Here, we take a close look at the results for REAL-
Tier1-A and REAL-Tier1-B, which yielded the worst
and second worst lookup rate of Poptrie18. Table 3
summarizes the memory footprint and the lookup rate
of each algorithm for these two datasets. Poptrie18 is
1.52 and 1.37 times faster than SAIL for REAL-Tier1-A
and REAL-Tier1-B, respectively. Similarly, Poptrie18 is
1.34 and 1.30 times faster than D18R for REAL-Tier1-
A and REAL-Tier1-B, respectively. The memory foot-
print is not the only factor for the performance results;
even though the memory footprint of Poptrie16 and
Poptrie18 is larger than DXR (D16R and D18R), they
are still within the size of the L3 cache, and therefore,
they can still outperform DXR. In contrast, because the
memory footprint of SAIL exceeds the L3 cache size,
it leads to the cache misses and to the relatively slow
DRAM access. Consequently, SAIL exhibited slower
performance than Poptrie. Table 3 also presents the
performance of Tree BitMap. The use of the popcnt in-
struction instead of a lookup table enables Tree BitMap
to increase the order of a multiway trie to reduce the
lookup depth, from original 16-ary to 64-ary. However,
as shown in Table 3, even the 64-ary Tree BitMap can-
not achieve good performance. We suspect that this
is because searching a matching prefix within a Tree
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Figure 9: The average lookup rate for random IP addresses on RouteViews’ tables.

BitMap node runs in O(k) on a 2k-ary multiway trie
while Poptrie searches a leaf within a node in O(1).

The lookup performance for the high locality traffic
patterns is also compared. For sequential, all algo-
rithms effectively utilized the CPU cache for the traffic
pattern’s high locality. For REAL-Tier1-B where Pop-
trie performed worse, the average lookup rate for se-
quential of SAIL, D16R, D18R, Poptrie16, and
Poptrie18 were 1264, 628, 911, 955, and 1122 Mlps, re-
spectively. The average lookup rate for repeated of
SAIL, D16R, D18R, Poptrie16, and Poptrie18 on REAL-
Tier1-B were 492, 382, 454, 470, and 480 Mlps, respec-
tively. Since SAIL uses the memory access instead of
executing some instructions to search down the tree,
SAIL achieves high performance when the cache hit rate
is high. Poptrie16 and Poptrie18 are slower than SAIL
because our algorithms require bitwise instructions to
find the index to the corresponding FIB entry, while
SAIL directly accesses to a contiguous array. Moreover,
DXR is slower than Poptrie even in the effective uti-
lization of the CPU cache because DXR searches the
corresponding FIB entry with the binary search that
requires more number of steps.

From the comparison results above, Poptrie18 achieves
the high lookup rates, independent of the traffic pat-
terns and datasets, while the performance of SAIL de-
pends on the locality of traffic patterns. Furthermore,
Poptrie outperforms DXR for any combination of traffic
pattern and dataset.

4.6 CPU Cycles per Lookup
In order to conduct the detailed analysis, we investi-

gate the number of CPU cycles it takes for each table
lookup. We use REAL-Tier1-A and REAL-Tier1-B for
the dataset. We measured the per-lookup CPU cycles
with the single task operating system (OS) that we are
developing. The single task OS enables us to precisely
measure the CPU cycles by eliminating the disturbances
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Figure 10: CDF of CPU cycles per lookup.

of context switches and the cache pollution caused by
other tasks. Since the cache behavior cannot be con-
trolled by the OS, we statistically analyze the distribu-
tion of the CPU cycles in a large number of lookups.
The CPU cycles are monitored with the performance

monitoring counters (PMCs) of the CPU [3]. The over-
head to read a PMC is constantly 83 cycles, and is ex-
cluded from the results. The CPU cycle measurement
was conducted for 224 random IP address lookups, for
each algorithm. Note that we used the same seed for
the random number generator to precisely compare dif-
ferent algorithms.

The CDF of CPU cycles per lookup for the REAL-
Tier1-A dataset is shown in Figure 10. We see that
D16R and Poptrie16, and D18R and Poptrie18 have al-
most identical distributions where the CPU cycle count
is less than 120, except for a small difference around
at 22 cycles between D16R and Poptrie16, which will
be discussed later. This is because the data structures
and lookup algorithms of DXR and Poptrie are almost
the same in looking up shorter prefixes. The CPU cy-
cle count of D16R and Poptrie16 exhibit the steeper
gradients around 21–22 cycles than those of D18R and
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Figure 11: The quartiles and 5th/95th percentiles of per-lookup CPU cycles for each binary radix
depth on REAL-Tier1-A.

Poptrie18. The reason is that the memory footprints
of D16R and Poptrie16 for the first memory access are
distributed in the range of 256 KiB (4 × 216), which
can be entirely contained in the L2 cache size, while the
memory footprints of D18R and Poptrie18 for the first
memory access are distributed in the range of 1 MiB
(4×218), which exceeds the L2 cache size and incurs the
slower access time. The CPU cycles of SAIL exhibits
an even steeper gradient around 21–22 cycles than those
of D16R and Poptrie16. This is because the top level
part of SAIL is 128 KiB (2 × 216), which is half of the
L2 cache size. Consequently, it could take advantage of
the L2 cache efficiency. However, the tail distribution of
SAIL is expanded to the larger CPU cycles because the
memory footprint of entire SAIL is larger than the L3
cache size and it leads to the L3 cache misses. Note that
the similar characteristics were observed in the CDF of
CPU cycles per lookup for the REAL-Tier1-B dataset.

Table 4 summarizes the mean, 50th (median), 75th,
95th, and 99th percentiles of per-lookup CPU cycles
for each algorithm on REAL-Tier1-A and REAL-Tier1-
B. The n-th percentile value means that n percent of
lookups consumed no more CPU cycles than this value.
The comparisons of the 95th and 99th percentiles are
important because they indicate the worst case guaran-
tees of the lookup performance except for corner cases.
For the REAL-Tier1-B, SAIL consumes 124 cycles
(74.7%) more than Poptrie18 at their 99th percentiles.
This can be attributed to the cache misses and slow
DRAM access. The 99th percentile of D18R is better
than SAIL, but it is 21 cycles (12.7%) larger than that

Table 4: The per-lookup CPU cycles by random
traffic on REAL-Tier1-A and REAL-Tier1-B.

Dataset Algorithm Mean 50th 75th 95th 99th

REAL SAIL 57.43 22 76 279 299
-Tier1-A D16R 60.92 44 49 189 255

D18R 54.84 46 48 154 207
Poptrie16 54.58 43 48 150 192
Poptrie18 53.59 46 48 150 169

REAL SAIL 56.34 22 75 279 290
-Tier1-B D16R 61.86 44 50 182 277

D18R 56.88 47 49 154 187
Poptrie16 55.53 43 48 141 167
Poptrie18 55.82 46 48 150 166

of Poptrie18. This difference is attributed to the binary
search stage in DXR.

Although the first stage (i.e., the direct pointing in
Poptrie) is similar in SAIL, DXR, and Poptrie, when
the binary radix depth is more than 16 or 18, their
behavior should differ, since the second stage of each
algorithm is different. Hence, we investigate each case
per binary radix depth. Figure 11 shows the CPU cy-
cle distribution for each binary radix depth. The wick
of each candlestick represents 5th/95th percentile, the
body represents the first and third quartile values, and
the internal bar represents the median value. This fig-
ure demonstrates a significant difference at greater bi-
nary radix depth; for example, the 95th percentiles of
Poptrie18 are no more than 172 cycles for any binary
radix depth while those of SAIL and DXR exceed 234
cycles at the binary radix depth of 24 and 25. Fig-
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Figure 12: The average lookup rate for real-trace
on REAL-RENET.

ure 11 also presents that DXR achieves better perfor-
mance than Poptrie at some binary radix depths, when
you look into the median values of depth of 21 in D18R
and Poptrie18. This is because the binary search stage
of DXR can find the result with a smaller number of
steps in cases that the number of prefixes in a range ta-
ble is small. Overall, Poptrie succeeded in maintaining
the lower number of CPU cycles in various cases, gain-
ing superior performance. We found the similar trend
also for the dataset REAL-Tier1-B.

When the binary radix depth is smaller than 16, all
algorithms kept the CPU cycles consistently small, less
than 50. Interestingly, the median of D16R is larger
than that of the others. As shown in Figure 10 before,
we also see the small difference in the distributions be-
tween D16R and Poptrie16 around 22 cycles. We sus-
pect that this can be attributed to the DXR’s behavior;
the binary search for its range table accesses memory
many times so that the data structure for smaller binary
radix depth are harder to stay in the L2 cache.

4.7 Performance Evaluation with a Real
Internet Traffic Trace

Figure 12 shows the average lookup rate for real-
trace on REAL-RENET. Poptrie18 is 3.02, 1.61 and
1.22 times faster than Tree BitMap, D18R and SAIL, re-
spectively. Additionally, we also confirm that Poptrie18
outperforms Tree BitMap, DXR (D16R and D18R) and
SAIL for real-trace on all the other RIB datasets al-
though real-trace should be a different pattern from
the real traffic on the other RIB datasets.

The lookup rates of Poptrie and DXR for real-trace
are degraded compared to those for random. This is
because a larger number of packets goes to IGP routes
that are generally more specific than BGP routes in
real-trace. 32.5% of the packets in real-trace on
REAL-RENET have the binary radix depth more than
18, while for the whole IPv4 address space only 22.1%
have the binary radix depth more than 18. These ad-
dresses cannot be looked up in the first stage of the
algorithm of Poptrie18 and D18R. Moreover, 21.8% of

Table 5: The lookup rates of each algorithm in
Mlps for random traffic on synthetic large RIBs.
The number of routes are parenthesized.

Algorithm SYN1 SYN1 SYN2 SYN2
-Tier1-A -Tier1-B -Tier1-A -Tier1-B

(764,847) (756,406) (885,645) (876,944)

SAIL 102.86 99.98 N/A N/A
D18R† 115.45 117.48 102.59 104.22
Poptrie18 188.02 187.69 174.42 175.04

† modified

the packets of real-trace have binary radix depth more
than 24, while only 1.66% of the whole IPv4 address
space have binary radix depth more than 24.

SAIL performs better in the lookup rate for real-
trace than for random. This is because SAIL could
take advantage of the CPU cache due to the locality
of the destination IP addresses, i.e., the sequences of
packets with the identical destination IP address.

4.8 Scalability
We measure the performance on the synthetic RIBs

(i.e., those with ’SYN’ prefix) to evaluate the scalabil-
ity to future routing table growth. SAIL cannot compile
SYN2-Tier1-A and SYN2-Tier1-B due to its structural
limitation; C16[i] in SAIL is encoded in the 15 bits of
BCN [i], but it exceeds 215 for these datasets. The DXR
also exceeds its structural limitation of the number of
ranges that is supported up to 219. However, we can
extend it to 220 by absorbing one bit for the “short”
format flag to the address range index. Thus, we modi-
fied DXR and conducted the evaluation. The structural
scalability of Poptrie is discussed in Section 5.

The average lookup rates of each algorithm for the
random traffic pattern on the synthetic RIBs are sum-
marized in Table 5. Poptrie18 outperforms SAIL and
D18R, and the lookup rate of Poptrie18 exceeds the 100
GbE wire-rate, 148.8 Mlps, for these RIBs, while DXR
slows down to 102.59 Mlps for SYN2-Tier1-A. Thus,
Poptrie is scalable to the routing table growth in lookup
performance.

4.9 Update Performance
We also evaluate the performance of updating the

Poptrie18 data structure. The update is first performed
to the radix tree for the RIB maintenance, and then
replaces a part of the trie in Poptrie, as described in
Section 3.5. We use four 15 minute update archive files
(i.e., an hour in total) of RV-linx-p52 to evaluate the up-
date performance. This dataset contains 23,446 route
updates (18,141 announced and 5,305 withdrawn) in
7,824 messages. The average number of replacements
for the top-level array in direct pointing, the leaf node,
and the internal node, per update, are 0.041, 6.05 (12.1
bytes) and 0.48 (11.52 bytes), respectively. This means
that an update replaces a small number of objects in the
data structure. We also measured the time to complete
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Table 6: Poptrie’s size, compilation time, and
the performance on 232 random lookups on the
IPv6 routing table.

s # of # of Mem. Compilation Rate (std.)
inodes leaves [KiB] (std.) [ms] [Mlps]

0 14,925 32,586 414 7.22 (0.00) 138.51 (0.08)
16 16,554 33,047 709 4.77 (0.00) 209.84 (0.12)
18 14,910 32,569 1437 4.73 (0.00) 211.32 (0.09)

the update; 58.90 milliseconds for all 23,446 updates,
i.e., only 2.51 microseconds per update.

As another input data for update performance evalu-
ation, we measured the insertion time of the full route in
a routing table. Note that the order of the entries is ran-
domized to eliminate any assumptions on the locality of
updates. The average insertion time for REAL-Tier1-A
and REAL-Tier1-B are 2.71 and 2.40 seconds, respec-
tively, hence the average insertion time per prefix for
these datasets are 5.10 and 4.57 microseconds, respec-
tively. All these results demonstrate that the complex-
ity of the update algorithm is practically acceptable.

4.10 Applicability to IPv6
One advantage of Poptrie is that it is general enough

to apply to IPv6. For the evaluation, we use the IPv6
routing table from the same router as REAL-Tier1-A.
The evaluation on IPv6 routing tables is currently less
interesting than IPv4 because the number of prefixes in
IPv6 routing table is not large; only 20,440 prefixes are
available in the dataset. Table 6 summarizes the perfor-
mance on this dataset for 232 random addresses within
2000::/8. The lookup rate of Poptrie with direct point-
ing (s=16,18) achieves more than the wire-rate of 100
GbE, i.e., 148.8 Mlps. Note that this experiment in-
cludes the non-negligible overhead of four xorshift 32-
bit random number generation to generate a 128-bit
random address. Although direct pointing was origi-
nally introduced to optimize the IPv4 lookup perfor-
mance, Poptrie with direct pointing (s=16,18) achieves
the higher performance than that without direct point-
ing (s=0), by taking advantage of CPU cache while re-
ducing the lookup depth, even in the IPv6 case.

For the comparison, we extend DXR to support IPv6
by disabling the “short” format and extending the size
by one bit to allow up to 213 entries per chunk. We can-
not compare the performance with SAIL because it does
not support more specific routes than /64. The average
lookup rates of D16R and D18R for random traffic with
the IPv6 dataset are 163.07 and 169.91 Mlps, respec-
tively; Poptrie18 is 1.24 times faster than D18R.

We also evaluate the lookup rate using 13 public RIBs
archived at 2014-12-25 00:00 local time by RouteViews
that contains more than 20K prefixes and more than
one distinct next hops. The worst average lookup rates
of Poptrie16 and Poptrie18 are 209.98 and 211.32 Mlps,
respectively, still exceeding the 100 GbE wire-rate. In

summary, Poptrie also achieves high lookup rate for
IPv6 routing tables.

5. DISCUSSION
Structural scalability: The capacity of routes and

next hops are important for real world deployment. In
the implementation of Poptrie, the size of a leaf node
is 16 bits, hence the number of FIB entries is limited
to 216, though we can simply extend the size at the
expense of larger memory footprint. Although we can-
not provide the details due to space limitation, we es-
timate the limitation on the number of internal nodes,
leaf nodes, and next hops, and project that Poptrie can
support a hundred million and 7 million routes for IPv4
and IPv6, respectively. This is in contrast to DXR and
SAIL which already reached at their limitations in our
synthetic RIB evaluations.

Evaluation with a different generation of CPU
architecture: We confirm that Poptrie is not opti-
mized for one CPU model used in this paper through
the performance evaluation with another generation of
CPU architecture, Intel(R) Xeon X3430 2.40 GHz with
8 MiB cache. Poptrie outperforms SAIL and DXR for
the random traffic pattern on all of the 35 routing ta-
bles from RouteViews and real network; for example on
REAL-Tier1-A, Poptrie18 is 1.27 and 1.17 times faster
than D18R and SAIL, respectively.

6. CONCLUSION
We proposed Poptrie extended from the 64-ary multi-

way trie for fast and scalable IP routing table lookup on
general purpose computers. Poptrie leverages the pop-
ulation count instruction to give the indirect indices to
the descendant nodes in order to keep the small mem-
ory footprint within the CPU cache. In this paper,
we demonstrated that Poptrie outperformed the exist-
ing algorithms for random and real traffic from exper-
iments on three private routing tables of core routers
and 32 RouteViews’ public BGP routing tables. Pop-
trie stored a FIB of the tier-1 ISP routing table in small
memory footprint, and achieved 241 Mlps lookup per-
formance for random traffic, using just one CPU core. It
is suitable for parallel processing, and exhibited as fast
as 914 Mlps using four cores of the CPU for random
traffic. The CPU cycle analysis revealed the character-
istics of each IP routing table lookup algorithm, and
demonstrated the advantage of Poptrie for longer pre-
fixes; Poptrie18 requires significantly less CPU cycles in
the worse case, i.e., the 95th percentile, for longer pre-
fixes than the others. Our evaluations on the future-
envisioned larger routing tables also demonstrated the
superiority of Poptrie in the structural scalability as well
as the lookup performance. Poptrie is efficient and scal-
able so various applications using longest prefix match-
ing such as software firewall in NFV can be expected.
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