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Abstract

Bulletproof hosting Autonomous Systems (ASes)—malicious
ASes fully dedicated to supporting cybercrime—provide free-
dom and resources for a cyber-criminal to operate. Their
services include hosting a wide range of illegal content, bot-
net C&C servers, and other malicious resources. Thousands
of new ASes are registered every year, many of which are
often used exclusively to facilitate cybercrime. A natural ap-
proach to squelching bulletproof hosting ASes is to develop a
reputation system that can identify them for takedown by law
enforcement and as input to other attack detection systems
(e.g., spam filters, botnet detection systems). Unfortunately,
current AS reputation systems rely primarily on data-plane
monitoring of malicious activity from IP addresses (and thus
can only detect malicious ASes after attacks are underway),
and are not able to distinguish between malicious and legiti-
mate but abused ASes.

As a complement to these systems, in this paper, we ex-
plore a fundamentally different approach to establishing AS
reputation. We present ASwatch, a system that identifies mali-
cious ASes using exclusively the control-plane (i.e., routing)
behavior of ASes. ASwatch’s design is based on the intuition
that, in an attempt to evade possible detection and remediation
efforts, malicious ASes exhibit “agile” control plane behavior
(e.g., short-lived routes, aggressive re-wiring). We evaluate
our system on known malicious ASes; our results show that
ASwatch detects up to 93% of malicious ASes with a 5% false
positive rate, which is reasonable to effectively complement
existing defense systems.

CCS Concepts

• Security and privacy→ Network security; • Networks
→ Network monitoring;
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1 Introduction
Today’s cyber-criminals must carefully manage their network
resources to evade detection and maintain profitable illicit
businesses. For example, botmasters need to protect their
botnet command-and-control (C&C) servers from takedowns,
spammers need to rotate IP addresses to evade trivial black-
listing, and rogue online businesses need to set up proxies
to mask scam hosting servers. Often, cyber-criminals ac-
complish these goals by hosting their services within a mali-
cious autonomous system (AS) owned by an Internet service
provider that willingly hosts and protects illicit activities.
Such service providers are usually referred to as bulletproof
hosting [7], due to their reluctance to address repeated abuse
complaints regarding their customers and the illegal services
they run. Notorious cases of malicious ASes include Mc-
Colo [22], Intercage [19], Troyak [27], and Vline [2] (these
ASes were taken down by law enforcement between 2008
and 2011). According to Hostexploit’s reports [14], these
types of ASes continue to appear in many regions around
the world—mostly in smaller countries with lower levels of
regulation, but also in the United States—to support activ-
ities ranging from hosting botnet command-and-control to
phishing attacks [15]. For example, the Russian Business
Network [31], one of the most notorious and still active cy-
bercrime organizations, have decentralized their operations
across multiple ASes. In most cases, nobody notices bullet-
proof hosting ASes until they have become hubs of illegal
activities, at which point they are de-peered from their up-
stream providers. For example, Intercage [19] was de-peered
more than ten times before it reached notoriety and was cut
off from all upstream providers.

To defend against these crime-friendly ASes, the commu-
nity has developed several AS reputation systems that monitor
data-plane traffic for illicit activities. Existing AS reputation
systems typically monitor network traffic from different van-
tage points to detect the presence of either malware-infected
machines that contact their C&C servers, send spam, host
phishing or scam websites, or perform other illicit activities.
These systems establish AS reputation by measuring the “den-
sity” of malicious network activities hosted within an AS.
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For instance, FIRE [36] tracks the number of botnet C&C
and drive-by malware download servers within an AS. ASes
that host a large concentration of malware-related servers are
then assigned a low reputation. Similarly, Hostexploit [14]
and BGP Ranking [4] compute the reputation of an AS based
on data collected from sources such as DShield [11] and a
variety of IP and domain name blacklists.

Unfortunately, these existing AS reputation systems have a
number of limitations: (1) They cannot distinguish between
malicious and legitimate but abused ASes. Legitimate ASes
often unwillingly host malicious network activities (e.g., C&C
servers, phishing sites) simply because the machines that they
host are abused. For example, AS 26496 (GoDaddy) and
AS 15169 (Google) repeatedly appeared for years among
the ASes with lowest reputation, as reported by Hostexploit.
Although these ASes are legitimate and typically respond
to abuse complaints with corrective actions, they may sim-
ply be unable to keep pace with the level of abuse within
their network. On the other hand, malicious ASes are typi-
cally unresponsive to security complaints and subject to law-
enforcement takedown. (2) Because of the inability to dis-
tinguish between malicious and legitimate but abused ASes,
it is not clear how to use the existing AS rankings to defend
against malicious ASes. (3) Existing AS reputation systems
require direct observation of malicious activity from many
different vantage points and for an extended period of time,
thus delaying detection.

We present a fundamentally different approach to establish-
ing AS reputation. We design a system, ASwatch, that aims to
identify malicious ASes using exclusively control-plane data
(i.e., the BGP routing control messages exchanged between
ASes using BGP). Unlike existing data-plane based reputa-
tion systems, ASwatch explicitly aims to identify malicious
ASes, rather than assigning low reputation to legitimate ASes
that have unfortunately been abused.

Our work is motivated by the practical help that an AS rep-
utation system, which accurately identifies malicious ASes,
may offer: (1) Network administrators may handle traffic
appropriately from ASes that are likely operated by cyber
criminals. (2) Upstream providers may use reliable AS rep-
utation in the peering decision process (e.g. charge higher
a low reputation customer, or even de-peer early). (3) Law
enforcement practitioners may prioritize their investigations
and start early monitoring on ASes, which will likely need
remediation steps.

The main intuition behind ASwatch is that malicious ASes
may manipulate the Internet routing system, in ways that
legitimate ASes do not, in an attempt to evade current detec-
tion and remediation efforts. For example, malicious ASes
“rewire” with one another, forming groups of ASes, often for
a relatively short period of time [20]. Only one AS from the
group connects to a legitimate upstream provider, to ensure
connectivity and protection for the group. Alternatively, they
may connect directly to a legitimate upstream provider, in
which case they may need to change upstream providers fre-

quently, to avoid being de-peered and isolated from the rest
of the internet. Changing providers is necessary because a
legitimate upstream provider typically responds (albeit often
slowly) to repeated abuse complaints concerning its customer
ASes. Another example is that a malicious AS may advertise
and use small blocks of its IP address space, so that as soon
as one small block of IP addresses is blocked or blacklisted,
a new block can be advertised and used to support malicious
activities. To capture this intuition, we derive a collection of
control-plane features that is evident solely from BGP traffic
observed via Routeviews [32]. We then incorporate these fea-
tures into a supervised learning algorithm, that automatically
distinguishes malicious ASes from legitimate ones.

We offer the following contributions:

• We present ASwatch, an AS reputation system that aims
to identify malicious ASes by monitoring their control
plane behavior.
• We identify three families of features that aim to capture

different aspects of the “agile” control plane behavior
typical of malicious ASes. (1) AS rewiring captures ag-
gressive changes in AS connectivity; (2) BGP routing
dynamics capture routing behavior that may reflect crim-
inal illicit operations; and (3) Fragmentation and churn
of the advertised IP address space capture the partition
and rotation of the advertised IP address space.
• We evaluate ASwatch on real cases of malicious ASes.

We collect ground truth information about numerous ma-
licious and legitimate ASes, and we show that ASwatch
can achieve high true positive rates with reasonably low
false positives. We evaluate our statistical features and
find that the rewiring features are the most important.
• We compare the performance of ASwatch with BGP

Ranking, a state-of-the-art AS reputation system that re-
lies on data-plane information. Our analysis over nearly
three years shows that ASwatch detects about 72% of
the malicious ASes that were observable over this time
period, whereas BGP Ranking detects only about 34%.

The rest of the paper is organized as follows. Section 2 offers
background information about bulletproof hosting ASes. Sec-
tion 3 describes the features we devised and an overview of
our system. Section 4 discusses the evaluation of the system.
Section 5 discusses various limitations of our work, Section 6
presents related work, and Section 7 concludes.

2 Background
In this section, we describe more precisely the differences
between malicious (bulletproof hosting) and legitimate ASes.
We provide background information, with an emphasis on
characteristics that are common across most confirmed cases
of malicious ASes. We also discuss how malicious ASes tend
to connect with one another, and how some ISPs (some of
which are themselves malicious) provide these ASes with up-
stream connectivity and protection. To illustrate this behavior,
we explore a case study that shows how malicious ASes may
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Figure 1: The AS-TROYAK infrastructure (malicious ASes identified
by blogs.rsa.com). The core of the infrastructure comprises
eight bulletproof networks, which connect to legitimate ASes via a
set of intermediate ”masking” providers.

be established and “rewired” in an attempt to evade current
detection and takedown efforts.
Malicious vs. Legitimate ASes: We call an AS malicious, if
it is managed and operated by cyber-criminals, and if its main
purpose is to support illicit network activities (e.g., phishing,
malware distribution, botnets). In contrast, we refer to an
AS as legitimate, if its main purpose is to provide legitimate
Internet services. In some cases, a legitimate AS’s IP address
space may be abused by cyber-criminals to host malicious
activities (e.g., sending spam, hosting a botnet command-and-
control server). Such abuse is distinct from those cases where
cyber-criminals operate and manage the AS. ASwatch focuses
on distinguishing between malicious and legitimate ASes;
we aim to label legitimate but abused ASes as legitimate.
Our approach is thus a significant departure from existing
data-plane based AS reputation systems, which are limited
to computing reputation by primarily focusing on data-plane
abuse, rather than establishing if an AS is actually malicious.
Malicious AS Relationships: Bulletproof hosting ASes pro-
vide cyber-criminals with a safe environment to operate.
Sometimes, malicious ASes form business relationships with
one another to ensure upstream connectivity and protection.
For example, they may connect to upstream providers that
are themselves operated in part with criminal intent. In turn,
these upstream ASes connect to legitimate ISPs, effectively
providing cover for the bulletproof hosting ASes [2]. These
“masking” upstream providers may not be actively engaged
in cyber-criminal activity themselves (as observed from the
data-plane). Consequently, network operators at legitimate
ISPs may be unaware of the partnership among these “shady”
upstream providers and bulletproof hosting ASes, making
detection and remediation efforts more difficult.

Efforts to take down bulletproof hosting ASes have been
ongoing since at least 2007, when upstream ISPs of the Rus-
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Figure 2: Connectivity snapshots of three cases of ASes which
are operated by cyber-criminals. All connected to a “masking”
upstream provider. Directed edges represent customer-provider
relationships; undirected edges represent peering relationships.

sian Business Network (RBN) refused to route its traffic [21].
Many organizations track rogue ASes and report tens to hun-
dreds of new rogue ASes every year [15]. Takedown efforts
often result in a malicious AS moving to new upstream ISPs;
for example, RBN now operates on many different ISP net-
works.
Case Study - Behavior of Malicious ASes: Figure 1 shows
an example of a real network of eight bulletproof hosting
ASes that connect to legitimate ASes via a set of intermediate
“masking” providers. Notice that while we label the malicious
ASes in this case study, based on ground truth provided by
blogs.rsa.com, we independently derive and analyze the
relationships between the ASes from routing information. At
the time they were reported by blogs.rsa.com (March
2010), the eight bulletproof ASes hosted a range of malware,
including Zeus Trojans, RockPhish JabberZeus servers, and
Gozi Trojan servers. We chose this as a case study because it
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Figure 3: ASwatch system architecture.

represents one of the most well documented cases of known
bulletproof hosting ASes, and is representative of other less
well known incidents.

The bulletproof hosting ASes switched between five up-
stream providers, which served as intermediaries to connect
to the legitimate ASes. In turn, the upstream “masking”
providers were customers of nine different legitimate ISPs.

To understand how malicious ASes form business rela-
tionships and how these relationships evolve over time, we
tracked the upstream and downstream connectivity of the ma-
licious ASes, as shown in Figures 1 and 2 (the figures show
an activity period from January to April 2010; the malicious
ASes went offline in March 2010).

We tracked the connectivity of one “masking” AS, Troyak
(AS 50215), and two bulletproof hosting ASes, Bogonet
(AS 47821) and Prombuddetal (AS 44107), that belong to
the Troyak infrastructure. To track their upstream and down-
stream connectivity, we used a publicly available dataset from
CAIDA, which provides snapshots of the AS graph, annotated
with business relationships [25]. Figure 2 shows snapshots of
the connectivity for the reported ASes.

All of these malicious ASes connected to a “masking” up-
stream provider, thus avoiding direct connectivity with legiti-
mate ISPs, and also they change their connectivity between
one another. For example, before takedown, Troyak had three
upstream providers: Root, Ihome, and Oversun-Mercury. Af-
ter the blog report on March 2010, Troyak lost all of its up-
stream providers and relied on a peering relationship with Ya
for connectivity. After April 2010, Troyak and its customers
went offline. Bogonet switched from Taba to Smallshop, and
Prombuddetal switched from Profitlan to Smallshop, before
going offline.

3 ASwatch
ASwatch monitors globally visible BGP routing activity and
AS relationships, to determine which ASes exhibit control
plane behavior typical of malicious ASes. Because of the
nature of their operations (criminal activity) and their need to
fend off detection and possible take-down efforts, malicious
ASes tend to exhibit control-plane behavior that is different

from that of legitimate ASes. We now discuss how ASwatch
works, including a detailed description of the features we
used to differentiate between malicious and legitimate ASes,
and our intuition for choosing each feature.

3.1 System Overview
Figure 3 presents an overview of ASwatch. The system has a
training phase (Section 3.3.1) and an operational phase (Sec-
tion 3.3.2). During the training phase, ASwatch learns the
control-plane behavior of malicious and legitimate ASes. We
provide the system with ¬ a list of known malicious and
legitimate ASes (Section 4.1 describes this dataset). ASwatch
tracks the control-plane behavior of the legitimate and ma-
licious ASes over time using two sources of information:
 business relationships between ASes, and ® BGP updates
(from RouteViews). ASwatch then computes statistical fea-
tures (Section 3.2 describes this process) from the previous
inputs. Each AS is represented by a feature vector based
on these statistical features ¯. ASwatch uses these labeled
feature vectors and a supervised learning algorithm to ° train
a statistical model. During the operational phase, we provide
ASwatch with a list of new (not yet labeled) ASes ± to be
classified as legitimate or malicious using the same statistical
features over the given time period. Then, ASwatch ² com-
putes the new AS feature vectors and ° tests them against
the previously trained statistical model. Finally, ³ the system
assigns a reputation score to each AS.

3.2 Statistical Features
In this section, we describe the features we compute and the
intuition for choosing them. Table 1 gives an overview of our
feature families, and the most important group of features for
each family. Given an AS, A, and time window, T , ASwatch
monitors A’s control-plane behavior and translates it into a
feature vector consisting of three groups of features: rewiring
activity, IP fragmentation and churn, and BGP routing dy-
namics.

Some of the behavioral characteristics we measure can be
naturally described by a probability distribution, rather than a
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single numerical feature. In these cases, to capture the behav-
ioral characteristics in a way that is more suitable for input to
a statistical classifier, we translate each probability distribu-
tion into three numerical features that approximately describe
the shape of the distribution. Specifically, we compute its
5th percentile, 95th percentile, and median. In the following,
we refer to such features as distribution characteristics. We
include these three values as features in the overall feature
vector, and repeat this process for all behavioral characteris-
tics that can be described as a probability distribution.

Notice that even though more values may more accurately
summarize a distribution’s shape, such a representation would
significantly increase the overall size of the feature vector
used to describe an AS. For this reason, we chose to only use
three representative values, which we found to work well in
practice.

We now explain in detail the features that ASwatch uses to
establish AS reputation and motivate how we selected them.

3.2.1 Rewiring Activity

This group of features aims to capture the changes in A’s
connectivity. Our intuition is that malicious ASes have dif-
ferent connectivity behavior than legitimate ASes, because
they tend to: (1) change providers more frequently to make
detection and remediation more difficult; (2) connect with
less popular providers, which may have less strict security
procedures and may respond less promptly to abuse com-
plaints, (3) have longer periods of downtime, possibly due
to short-duration contracts or even de-peering from a legit-
imate upstream provider. In contrast, legitimate ASes tend
to change their connectivity less frequently, typically due to
business considerations (e.g., a less expensive contract with a
new provider).

To capture rewiring activity, ASwatch tracks changes to
AS relationships (Step 2 in Figure 3). We use periodic snap-
shots of historic AS relationships, with one snapshot per
month (Section 4.1 describes the data sets in more detail). A
snapshot Si contains the AS links annotated with the type of
relationships, as observed at a given time ti (e.g., one snapshot
is produced on the first day of each month).

AS presence and overall activity. Let A be the AS for which
we want to compute our features. Given a sequence of N con-
secutive snapshots {Si}N

i=1, we capture the presence of an AS
by measuring the total number of snapshots, C, and the max-
imum number of contiguous snapshots, M, in which A was
present, the fraction C/N, and M/N (four features in total).
To capture the overall activity of A, we measure the distribu-
tion (over time) of the number of customers, providers, and
peers A links with for each snapshot. To summarize each of
these distributions, we extract the distribution characteristics
(5th percentile, 95th percentile, and median), as described
earlier. This yields a total of nine features (three for each
of the three types of AS relationships). We also count the
total number and fraction (i.e., normalized by C) of distinct
customers, providers, and peers that A has linked with across

Feature Family Description
Most Important
Feature

Rewiring
Activity

Changes in AS’s connectivity (e.g., fre-
quent change of providers, customers
or peers)

Link stability

IP Space
Fragmentation &
Churn

IP space partitioning in small prefixes
& rotation of advertised prefixes

IP space frag-
mentation

BGP Routing
Dynamics

BGP announcements patters (e.g.,
short prefix announcements)

Prefix reachabil-
ity

Table 1: Overview of ASwatch feature families and the most impor-
tant feature for each family.

all C snapshots when it was present, yielding another six
features.

Link stability. We capture the stability of different types of
relationships that an AS forms over time. For each of the
C snapshots where A was present, we track all relationships
between A and any other AS. Assuming A appeared as an
upstream provider for another AS, say Ak, in v out of C snap-
shots, we compute the fraction Fk = v/C. We repeat this for
all ASes where A appears as a provider at least once within
C snapshots, thus obtaining a distribution of the Fk values.
Finally, we summarize this distribution of the Fk values, com-
puting the distribution characteristics as described above. We
repeat this process, considering all ASes that appear as the
upstream provider for A (i.e., A is their customer), and for all
ASes that have peering relationships with A. Overall, we com-
pute nine features that summarize three different distributions
(three features for each type of relationship).

Upstream connectivity. We attempt to capture change in
the set of providers. Assume that from the i-th snapshot Si
we observed a total of Mi upstream providers for A, and call
{Ak

i }
Mi
k=1 the set of upstream provider ASes. Then, for each

pair of contiguous snapshots, Si and Si+1, we measure the
Jaccard similarity coefficient Ji,i+1 between the sets {Ak

i } and
{Ak

i+1}. We repeat for all available (N − 1) pairs of con-
secutive snapshots, thus obtaining a distribution of Jaccard
similarity coefficients. To summarize this distribution, we
compute the distribution characteristics as described above,
yielding three features. Figure 4 shows the CDF of the mini-
mum Jaccard similarity, for the malicious and the legitimate
ASes. Overall, the legitimate ASes tend to have higher val-
ues of the Jaccard similarity metric, which indicates fewer
changes in their upstream providers.

Attachment to popular providers. We aim to capture an
AS’s preference for “popular” providers. As previous work
has shown [20], malicious ASes tend to connect more often
with less prominent providers, which may have less strict
security procedures and may respond less promptly to abuse
complaints.

We compute the popularity of each provider per snapshot
and across all snapshots. To this end, we first empirically de-
rive the distribution of the number of customers per provider.
We then consider a provider to be (a) very popular, if it be-
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longs to the top 1% of all providers overall; (b) popular, if
it belongs to the top 5%; (c) very popular with respect to a
snapshot Si, if it belongs to the top 1% in Si, and (d) popular
with respect to a snapshot Si, if it belongs to the top 5% in Si.

We then gather all upstream providers that A has used and
compute the fraction of these providers that fall into each
of the four categories described above (thus yielding four
features). Finally, we compute the fraction of snapshots in
which A has linked to at least one provider falling into one
of the above categories; we do this for each category, thus
obtaining four more features.

We capture the overall rewiring behavior of an AS with a
total number of thirty five features.

3.2.2 IP Space Fragmentation and Churn

Malicious ASes tend to partition their IP address space into
small BGP prefixes and to advertise only some of these pre-
fixes at any given time. One possible explanation for this
behavior may be that they attempt to avoid having their en-
tire IP address space blacklisted at once. For example, if a
number of IP addresses within a given BGP prefix are de-
tected as hosting malicious activities, a blacklist operator
(e.g., Spamhaus [35]) may decide to blacklist the entire prefix
where the IP addresses reside. By fragmenting the IP address
space and advertising only a subset of their BGP prefixes, the
operators of a malicious AS may be able to quickly move
malicious activities to a “fresh” space. They perform this ma-
neuver by leveraging not-yet-blacklisted IP addresses within
newly advertised prefixes. On the other hand, legitimate ASes
tend to consistently advertise their available IP address space
in less fragmented prefixes, as they do not need to attempt to
evade blacklisting.

IP Space Fragmentation and Churn Features. We attempt
to capture IP address fragmentation with the following fea-
tures. Given a snapshot, we group the advertised BGP prefixes
into contiguous IP blocks. For each, AS we count the number
of BGP prefixes and the number of distinct /8, /16, and /24
prefixes within each IP block. To capture the churn in the
advertisement of the IP address space, we proceed as follows.
Given a pair of adjacent snapshots for an AS, we measure the
Jaccard similarity among the sets of BGP prefixes advertised
by the AS in the two snapshots. Similarly, we compute the
Jaccard index among the sets of /8, /16, and /24 prefixes.
We summarize the above four distributions using the distribu-
tion characteristics that we described earlier, thus obtaining a
total of twelve features.

3.2.3 BGP Routing Dynamics

These features attempt to capture abnormal BGP announce-
ment and withdrawal patterns. For example, to support ag-
gressive IP address space fragmentation and churn and avoid
easy blacklisting, malicious ASes may periodically announce
certain prefixes for short periods of time. On the contrary,
the pattern of BGP announcements and withdrawals for legit-
imate ASes is mainly driven by normal network operations
(e.g., traffic load balancing, local policy changes), and should
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thus exhibit BGP routing dynamics that are different to those
of malicious ASes.

Prefix reachability. We aim to capture the fraction of time
that prefixes advertised by A remain reachable, which we
define as reachability. First, we measure the time that elapses
between an announcement and a withdrawal for every adver-
tised prefix. Given the distribution of these time intervals,
we extract the distribution characteristics as described above.
Second, we track the time for a prefix to become reachable
again after a withdrawal. Third, we measure the inter-arrival
time (IAT) between withdrawals, for each of the prefixes that
A announces, and compute the IAT distribution. As before,
we extract the distribution characteristics for each of the three
distributions, yielding a total of nine features. Figure 5 shows
the CDF of the median reachability value for the malicious
and the legitimate ASes over the course of one day, and over
15 days. Higher values of this feature suggest that malicious
ASes tend to re-advertise their prefixes after longer delays.

Topology and policy changes. We track the topology and
policy changes, defined as in Li et al. [24], that are associated
with each prefix. We define a policy change as follows: after
a path to a destination is announced, a second BGP announce-
ment is observed with the same AS path and next-hop, yet
one or more of the other attributes (such as MED or com-
munity) is different. Similarly, we define a topology change
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event as follows: after a path to a destination is announced,
a second announcement follows with an alternate route (im-
plicit withdrawal) or after a route to a destination is explicitly
withdrawn, a different route (with different AS path or next-
hop attributes) to the same destination is announced (explicit
withdrawal).

To capture and summarize the topology and policy changes
per AS, we group the prefixes per origin AS (the origin AS
appears as the last AS in the AS path). We track the policy
change events for each prefix, and we measure the inter-
arrival time between the events per prefix. Then, we analyze
the collection of inter-arrival times of the policy events for all
prefixes advertised by the same AS. For each AS, we form the
distribution of such intervals, and we extract the distribution
characteristics as described above. We also compute the total
number of events and the total number of events divided by
the total prefixes advertised by the AS. We repeat this process
for the topology change events. We compute a total of ten
features.

3.3 System Operation
We now describe ASwatch’s training and operation.

3.3.1 Training Phase

To train the classifier (Steps 6 and 7 in Figure 3), we first pre-
pare a training dataset with labeled feature vectors related to
known malicious and legitimate ASes. We start with a ground
truth dataset that includes confirmed cases of malicious ASes,
and legitimate ASes (described in more details is Section 4.1).

We compute the statistical features for each labeled AS
using two sources of data: BGP announcements and with-
drawals from Routeviews [32], and information from a pub-
licly available dataset [25] about the relationships between
ASes. We compute the feature vectors over m contiguous
epochs (in our experiments, each epoch is one day). More
specifically, we maintain a sliding window of size m epochs,
which advances one epoch at a time. Using this sliding win-
dow, we can compute multiple feature vectors for each AS
(one per window). Then, we associate a label to each feature
vector, according to the ground truth related to the AS from
which a vector was computed.

Finally, to build the statistical classifier, we use the Ran-
dom Forest (RF) algorithm. We experimented with different
algorithms, but we chose RF because it can be trained effi-
ciently and has been shown to perform competitively with
respect to other algorithms for a variety of problems [6].

3.3.2 Operational Phase

Once the statistical classifier has been trained, ASwatch can
assign a reputation score to new ASes (i.e., ASes for which no
ground truth is yet available). ASwatch computes a reputation
score for each new AS observed in the BGP messages from
Routeviews. Suppose that we want to compute the reputation
of an AS, A, over some time period, T . First, we compute A’s
features (as explained in Section 3.2) over period T , using a
sliding window procedure as in the training phase. Namely, a

feature vector is computed for each window within T . Sec-
ond, we classify an AS as malicious, if ASwatch consistently
assigns it a low reputation score for several days in a row.

More specifically, let Ti be the current day of observations,
fA,Ti be the corresponding feature vector for A, and s( fA,Ti)
be the bad reputation score output by the classifier at the
end of Ti. Also let Wi = (Ti,Ti+1, . . . ,T(i+m−1)) be a period of
m consecutive days. We report A as malicious if: (a) score
s( fA,Ti) > θ for 90% of the days in period Wi, where θ is a
predefined threshold that can be learned during the training
period; and (b) condition (a) holds for at least l consecutive
periods Wi,Wi+1, . . . ,Wi+l .

We note that we have experimented with multiple values for
m and l (see Section 4.3 for detailed discussion on parameter
selection).

4 Evaluation
We now describe the data we collected and the setup for
our evaluation of ASwatch, where we evaluate the system’s
accuracy. Our results show that ASwatch achieves a high de-
tection rate for a reasonably low false positive rate, can detect
malicious ASes before they are publicly reported by others,
and can complement existing AS reputation systems that rely
solely on data-plane observations. Furthermore, we find that
ASwatch detects nearly double the fraction of confirmed cases
of malicious ASes compared to BGP Ranking, a data-plane
based AS reputation system.

4.1 Data
Labeling malicious ASes. Collecting reliable ground truth
about malicious ASes is extremely challenging, due to the
utter lack of public information available about such cases.
Nonetheless, through extensive manual search and review
efforts, we managed to collect a set of ASes for which there
exists publicly available evidence of malicious behavior. For
example, we identified a reasonable set of malicious ASes that
were at some point seized by law enforcement or disconnected
by other network operators.

To obtain our dataset of malicious ASes, we searched
through websites that are operated by cyber-security pro-
fessionals (e.g., www.abuse.ch, blogs.rsa.com [1, 2,
23, 16, 13, 10]) and carefully reviewed articles about ASes
known to be operated by cyber-criminals.

We observed the following common characteristics across
all articles and blog reports we considered: (1) the reported
ASes hosted a variety of cyber-criminal activities (e.g., bot-
net C&C hosting, malware domains, phishing), (2) several
ASes were associated with each other, either directly (e.g.,
customer-provider relationship) or indirectly (e.g., they shared
the same upstream provider), (3) the operators of these ASes
were uncooperative and unresponsive (e.g., would not respond
to abuse complaints or attempts by other AS operators to com-
municate with them), (4) some ASes were prosecuted by law
enforcement and taken down, (5) many of these disappeared
only for a relatively short time before resurfacing. From each
blog report, we extracted the ASes involved and the dates
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SunNetwork, AS38197  
Vline, AS39150 

Realhosts, AS39458  
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IT-Outsource, AS48280  
Vlaf, AS48984  
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Interactive-3D, AS49544  
Vvpn, AS49934  

Softnet, AS50073 

Onlinenet, AS50722  
Digernet, AS50818  

Proxiez, AS50896  
Gorby, AS51303  

Vpnme, AS51354  
Lyahov, AS51554  

Taba, AS8287  
Retn, AS9002   

Vesteh, AS47560  
Prombuddetal, AS44107  

Citygame, AS12604  

Bogonet, AS47821  
Troyak, AS50215  

Vishclub, AS50369  

Gaxtranz/Info, AS29371   
Group3, AS50033  

Smila, AS50390  
 

Figure 6: Malicious ASes we collected from blogs.

when they were active. Overall, we collected forty one known
malicious ASes. We provide our list of ASes in Figure 6.
Labeling legitimate ASes. To collect a set of legitimate
ASes, we proceeded as follows. Every day for one year,
we collected the list of top one million domain names from
alexa.com. For each of these domains, we calculated
the average daily ranking; we selected the domain names
that had an average ranking above 10,000. In other words,
we selected only those domains that were consistently very
popular. Finally, we mapped each domain name to its resolved
IP addresses and mapped those IP addresses to the AS that
hosted them. Overall, we collected a total of 389 ASes, which
we label as legitimate.

Although we cannot be absolutely certain that our label-
ing of legitimate ASes contains no noise, we rely on two
reasonable assumptions. First, we assume that websites that
are consistently popular are unlikely to be offering malicious
services. Intuitively, a malicious site that becomes highly
popular would also have a high number of victims, and would
rapidly attract attention for take-down. As a result, the site
would be quickly blocked or taken down and would thus not
remain consistently popular. Second, we assume that the
administrators of the most popular websites are unlikely to
host their services within malicious ASes. Intuitively, if they
relied on malicious ASes, they would risk damaging their
own reputation, not to mention extended downtimes if the
hosting ASes were taken down due to abuse complaints.

Finally, to ensure that our set of legitimate ASes consists of
ASes that are similar in size to the malicious ASes, we keep
only those legitimate ASes that have no customers, or whose
customers are all stub ASes.
AS rewiring and relationships data (CAIDA). To track
how malicious ASes change their connectivity, we use a pub-
licly available dataset that reports AS business relationships.
The dataset reports one snapshot of the AS graph per month,
from 1998 to 2013.

Luckie et al. [25] provide an AS graph built by inferring
business relationships among ASes, based on AS customer
cones. Although this dataset has its own limitations (see
Section 5), it provides a reasonably accurate view of AS
relationships, allowing us to estimate our rewiring features
that we presented in Section 3.2.
BGP routing dynamics (Routeviews). To further capture
the control-plane behavior of malicious and legitimate ASes,
we monitored the BGP messages that originate from these

ASes using the Routeviews dataset. We use this dataset to
measure both the dynamics of BGP updates and the IP frag-
mentation and churn features.

4.2 Experiment Setup
In the following section, we describe the training and the
evaluation of our system. The training period extends from
January 2010 to March 2010, while the evaluation experi-
ments extend from January 2011 to December 2013.
Computing AS feature vectors. Given a period of time (i.e.,
m contiguous epochs) over which we want to capture the
behavior of an AS, we construct the AS feature vector as
follows: (1) Rewiring activity: We compute the rewiring fea-
tures over the most recent k snapshots of the AS relationships
dataset, prior to the period of interest. Our source of AS
relationships provides only one snapshot per month. Given
this limitation, we select a reasonable number of snapshots
to capture the most recent rewiring activity of an AS. For
our experiments we set k = 4 (see Section 4.3 on parameter
selection); (2) BGP routing activity: To compute BGP rout-
ing dynamics features, IP address space fragmentation and
churn, we collect the BGP announcements and withdrawals
originating from the AS during the period of interest. We note
that BGP Routeviews offers a large number of monitors. Our
pilot experiments over a number of different monitors indi-
cated that changing the monitor selection did not significantly
affect the overall performance of our classifier. Therefore, to
compute our routing activity features, we select one monitor
and consistently use it, throughout all the experiments.
Training the AS reputation model. Because our data is
derived from cases of malicious ASes publicly reported by
others, we rely on the report dates for an approximate period
of time when the ASes were likely to be actively used by the
attackers. For example, if an AS was reported as malicious on
a given day d, we assume the AS was operated by criminals
for at least a few months before d (in fact, it typically takes
time for security operators to detect, track, confirm, and take
down a malicious AS). For the purpose of computing our
labeled feature vectors and training our system, we selected a
period of time with the highest concentration of active mali-
cious ASes. This period extends from January–March 2010,
during which we identified a total of 15 active malicious
ASes. Even though this period may appear somewhat dated,
it allows us to capture the agile behavior of several known
malicious ASes within one consistent time frame, enabling a
“clean” evaluation setup. Our evaluation detects a large frac-
tion of malicious ASes that we have observed over a longer,
more recent time period (2011–2013). In the future, we plan
to investigate more sources of ground truth and identify addi-
tional periods of time that can be used to train our model (see
Section 5 for further discussion).
Performing cross-validation tests. During the three-month
training period mentioned above, we maintain a sliding win-
dow of fifteen contiguous days (epochs), sliding the window
one day at a time (i.e., two consecutive windows overlap by
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Figure 7: The cross-validation detection and false positive rates of
ASwatch.

14 days). For each sliding window, we compute the feature
vector for each AS and we perform three-fold cross-validation
as follows: (1) We separate the ASes into three subsets, using
two subsets to train our reputation model, and one for testing.
(2) For each training subset, we balance the two classes by
oversampling from the underrepresented class. After balanc-
ing, the number of feature vectors of the two classes are equal.
(3) We train the model using a Random Forest classifier [6].
(4) Finally, we test all feature vectors that belong to the third
fold against the model, as we described in Section 3.3. Cross-
validation yields the scores from the testing phase and the true
label for each AS feature vector. We plot the receiver operat-
ing characteristic (ROC), which illustrates the performance
of the classifier for different values of the detection threshold.
Because we perform our testing once for each sliding window,
we plot a similar ROC for each sliding window. The results
are reported in Section 4.3.
Evaluating ASwatch across a nearly three-year period.
After the cross-validation experiments, we use our model
to test new ASes whose BGP behavior was observed outside
the training period over nearly three years, from 2011 to 2013.
We perform this evaluation for two reasons: a) to test how
well ASwatch performs to detect new malicious ASes (outside
of the training period), and b) to compare the performance of
ASwatch with other AS reputation systems (e.g., BGP Rank-
ing) over an extended period of time. For each (previously
unseen) AS we want to test against ASwatch, we classify it
as malicious if it has multiple feature vectors that are con-
sistently assigned a “bad reputation” score (see Section 3.3).
The results are reported in Section 4.3.

4.3 Results
How accurate is ASwatch? Evaluation with cross-
validation: Figure 7 shows the detection and false positive
rates for one cross-validation run. The detection rate and
false positives reported on the ROC correspond to the fraction
of malicious feature vectors that are correctly classified and
legitimate feature vectors that are incorrectly classified, re-
spectively. As shown by the ROC curve, ASwatch can achieve
a detection rate of 93.33% (correctly classifying 14 out of
15 ASes as malicious), with a reasonably low false positive
rate of 5.25% (20 falsely detected ASes). In practice, we
believe this false positive rate is manageable, as it represents

20 falsely detected ASes over a three-month period, or one
every few days. Although this false positive rate is clearly too
high to automate critical decisions such as take-down efforts,
ASwatch can still be used to significantly narrow down the set
of ASes for further investigation considerably, and can thus
help both law enforcement focus their investigation efforts,
and network administrators make decisions on who to peer
with or which abuse complaints to prioritize.
Evaluation outside the training period, over nearly three
years: As described in Section 4.1, we use our model to test
new ASes observed after the training period, over nearly three
years, from 2011 to 2013. It is important to notice that, from
a control-plane point of view, malicious ASes may not always
be behaving maliciously across a three year period of time.
Our ground truth information does not allow us to distinguish
between the periods of activity and periods of “dormancy”.
Nonetheless, over time an AS operated by cyber-criminals
will likely behave in a noticeably different way, compared to
legitimate ASes, allowing us to detect it. Figure 10 shows
the cumulative true positive rate of detected ASes over the
testing period. At the end of this nearly three years period,
ASwatch reached a true positive rate of 72% (21 out of 29
ASes correctly flagged as malicious).

To compute the false positives, for each month we count the
number of distinct ASes that were detected as malicious. The
false positives reach at most ten to fifteen ASes per month,
which we believe is a manageable number, because these
cases can be further reviewed by network operators and law
enforcement. For instance, the upstream providers of an AS
that is flagged as malicious by ASwatch may take a closer
look at its customer’s activities and time-to-response for abuse
complaints. Furthermore, the output of ASwatch could be
combined with the reputation score assigned by existing data-
plane based AS reputation systems. The intuition is that if an
AS behaves maliciously both at the control plane (as detected
by ASwatch) and at the data plane (as detected by existing
reputation systems), it is more likely that the AS is in fact
operated by cyber-criminals.
How early can ASwatch detect malicious ASes before
they are widely noticed? We want to evaluate if ASwatch
can detect malicious ASes before they were reported by blog
articles. For each of the 14 malicious ASes that ASwatch
detected during the cross-validation experiments discussed
earlier, we took note of the day that ASwatch first detected the
malicious AS, and we measured the number of days between
the time ASwatch detected the AS and the day the blog story
was published. About 85% of the detected malicious ASes
were detected by ASwatch 50 to 60 days before their story
became public.
Which features are the most important? We evaluate the
strength of each family of features that ASwatch uses. To
understand which features are most important for ASwatch,
we evaluate each family’s contribution to the overall true and
false positive rates. In particular, we want to study the effect
of each family of features on the detection of malicious ASes,
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(a) Considering each feature family separately.
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(b) Excluding one feature family at a time.
Figure 8: Relative importance of different types of features. The
rewiring features contribute the most to the overall detection rate;
other features contribute to lower false positive rates.
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Figure 9: The detection and false positive rates for ASwatch, if we
vary the size of the sliding window. Our experiments show that the
performance is not greatly affected.

independently from the other families, and the effect of each
family on the false positives when those features are excluded.
To this end, we repeated the experiment described previously
by excluding one family of features at a time. We repeated
the experiment four times, once for each family of features,
and we calculated the overall detection and false positive
rates. Figure 8 shows the results of our experiments, which
suggest that the rewiring features are very important, because
excluding them significantly lowers the detection rate. The
BGP dynamics and IP address space churn and fragmentation
features help reduce the false positives slightly (the “Only
Rewiring” ROC in Figure 8a is slightly shifted to the right).
We followed a similar procedure to identify which features
are most important for each family of features. Table 1 shows
the most important features for each family.

Is ASwatch sensitive to parameter tuning? As explained
in Sections 3.3.2, 4.2 we use the following parameters to
classify an AS as malicious: (1) feature vectors window size:
we compute feature vectors for an AS for a window of m
consecutive days (one feature vector per day), and we repeat
the feature computation over l consecutive sliding windows
of size m. (2) recent snapshots: we compute the rewiring
features for an AS over the k most recent snapshots of AS
relationships.

To tune our parameters, we performed several pilot exper-
iments, rather than an exhaustive search over the entire pa-
rameter space. Our pilot experiments showed that ASwatch’s
performance is robust to both parameters m and l. Due to
space limitations, we only show our experiments for the pa-
rameter m. Figure 9 shows the performance for window sizes
of 5, 10, 15, and 20 days. Our results show that the accuracy
of ASwatch is not overly sensitive to the choice of window
size m. The ROC plots in Figure 9 show that m = 15 gives a
higher true positive rate with a reasonable false positive rate.
We therefore set m = 15. Using a similar approach, we set
l = 5. We classify an AS as malicious, if it scores lower than
the detection threshold over five consecutive periods of 15
days.

After we have selected parameters m and l, we proceed
to set parameter k. Suppose that we want to compute the
reputation of an AS A, over period T . Then, parameter k is
the number of most recent AS relationship snapshots, prior to
T , over which we compute the rewiring features for A (notice
that our AS relationships dataset consists of one snapshot
per month, as mentioned in Section 4.1). In other words,
k denotes “how much” history we consider, to capture the
rewiring behavior for A. Ideally, we want to accurately cap-
ture A’s rewiring behavior while using a small number of
snapshots. We performed experiments using different values
of k (i.e., 1, 2, 3, 4). We then selected k = 4, because further
increasing its value did not produce a significant increase in
classification accuracy.

4.4 Comparison to BGP Ranking
We now compare ASwatch with BGP Ranking. In contrast to
ASwatch, BGP Ranking is an AS reputation system based on
data-plane features (e.g., observations of attack traffic enabled
by machines hosted within an AS). Clearly, BGP Ranking
is an AS reputation system that is designed differently from
ASwatch, because it aims to report ASes that are most heavily
abused by cyber-criminals, but not necessarily operated by
cyber-criminals. We compare the two systems for two reasons:
(1) to test how many of the malicious ASes that are operated
by cyber-criminals show enough data-plane evidence of mali-
ciousness and get detected by existing data-plane based AS
reputation systems; and (2) to evaluate whether the control-
plane based approach can effectively complement data-plane
based AS reputation systems.
Results summary. We found that ASwatch detected 72% of
our set of malicious ASes over a three year period, and BGP
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Figure 10: True positive rates for ASwatch and BGP Ranking. Ac-
cumulation of detected ASes over nearly three years.

Ranking detected about 34%. Both systems reported the same
rate of false positives (on average 2.5% per month, which is
ten to fifteen ASes per month). Combining the two systems
we were able to detect only 14% of the malicious ASes, but
we were able to reduce the false positives to 0.08% per month
(12 ASes in total across the three year period).
BGP Ranking reports. BGP Ranking [5] has been making
its AS reputation scores publicly available since 2011, along
with a description of the approach used to compute the scores.
BGP Ranking currently has information for a total of 14k
ASes, and they announce a daily list of the worst 100 ASes
by reputation score. The BGP Ranking score has a minimum
value of 1 (which indicates that the AS hosts benign activity)
but no maximum value (the more malicious traffic hosted by
the AS, the higher the score).

Using our list of confirmed cases of malicious ASes (Sec-
tion 4.1), we checked which ASes are visible from BGP
Routeviews starting from 2011. We found a total of 29 ASes.
We chose to check which ASes are active since January 2011,
because this is the oldest date for which BGP Ranking has
data available. Then, we tracked these ASes until Novem-
ber 2013, because the historic AS relationships dataset from
CAIDA has a gap from November 2013 to August 2014.
Therefore, we collected the historical scores for each active
known malicious AS from BGP Ranking, from January 2011
until the end of 2013.
ASwatch setup. Using ASwatch, we generate the feature vec-
tors for each AS in our list, starting from January 2011 until
November 2013. To generate the feature vectors, we follow
the same procedure as described in Section 3.3.2. We train
ASwatch as previously described (on training data collected in
2010) and test the ASes observed from 2011 to 2013 against
the model.
Comparing BGP Ranking with ASwatch. As mentioned
earlier, BGP Ranking is not a detection system per se, in that
it aims to report ASes that host a high concentration of mali-
cious activities, and does not focus on distinguishing between
abused ASes and ASes that are instead owned and operated
by cyber-criminals. Nonetheless, for the sake of compari-
son it is possible to obtain a detection system by setting a
threshold on the score output by BGP Ranking. BGP Ranking

publishes the set of “worst” 100 ASes and their scores, which
are updated daily (to obtain the historic scores for any other
non-top-100 AS, one has to make explicit queries through the
web portal). It also reports the average AS score per country
or region, and ranks the countries that host the ASes with
the lowest reputation. The four top (“worst”) countries are
Russia, Ukraine, Hong Kong, and the US. Using the above
information we consider five distinct detection thresholds as
follows: (1) average score for ASes in Russia (BGP Ranking
Russia cut-off), (2) average score for ASes in Ukraine (BGP
Ranking Ukraine cut-off), (3) average score for Hong Kong
(BGP Ranking Hong Kong cut-off), and (4) average score
for ASes in the US (BGP Ranking US cut-off). We also set
a threshold based on the average score of the 100th worst
AS (BGP Ranking top 100) collected from the daily reports.
Figure 10 shows the detection results using these thresholds.

We then compared BGP Ranking’s detection with that of
ASwatch. Figure 10 shows the fraction of ASes that ASwatch
and BGP Ranking detected. We show the cumulative fraction
of detected ASes, from January 2011 to November 2013.
At the end of the 35-month period, ASwatch detected about
72% of the set of ASes we tracked, while BGP Ranking
detected about 34%. We found that 72% of the malicious ASes
were detected by monitoring their control-plane behavior, but
only 34% of the malicious ASes showed enough data-plane
activity to be detected by BGP Ranking. BGP Ranking may
have only limited visibility of malicious activities in the data
plane across the entire Internet, and thus may completely
miss the malicious activities of certain ASes. Naturally, it is
challenging to deploy a large number of sensors dedicated to
detecting malicious network communications over the entire
Internet. On the other hand, ASwatch monitors BGP behavior,
and may therefore compensate the limited visibility of data-
plane based approaches.

We also compared the false positive rates of BGP Ranking
and ASwatch. Our motivation is to see if the false positives
are manageable within a reasonable period of time (e.g.one
month). We collected the ASwatch scores and the BGP Rank-
ing scores for our set of legitimate ASes (see Section 4.1).
For each system, we counted the number of legitimate ASes
that ASwatch detected per month. We found that both sys-
tems produce only ten to fifteen false positives per month
on average over the total of 389 known legitimate ASes in
our dataset. As we have mentioned earlier, BGP Ranking
is designed differently from ASwatch. Although the rate we
calculated does not represent the actual false positive rate for
BGP ranking, it does provide an estimate of the false positive
that an operator would need to deal with, if BGP Ranking
were used to detect malicious ASes.

Combining control-plane with data-plane. Finally, we
evaluated how the two systems would perform if we used
them together. To this end, we label an AS as malicious if
it was reported by both systems, with each two report dates
to be at most six months apart from each other. For BGP
Ranking we used the BGP Ranking top 100 threshold. We
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found that combining the two systems, we were able to detect
14% of our malicious ASes. This means that of 14% of the
known malicious ASes exhibited both control plane and data
plane malicious behavior within six months. The fraction
of legitimate ASes that both systems detected as malicious
is only 3% (i.e., 12 ASes out of 389) for the whole three
year period (which is on average 0.08% per month). Finally,
five out of the 29 known malicious ASes that were active in
the three year observation period were missed by both sys-
tems. For example, AS 49544 (Interactive 3D) and AS 39858
(UninetMd, now Comstar Volga Arzamas) are among the top
worst ASes that both systems detected.

5 Discussion

ASwatch reputation scores in practice. ASwatch may help
the work of network operators and security practitioners as
follows: (1) Prioritize traffic: knowing what ASes have sus-
picious (low reputation) control-plane behavior may help
administrators to appropriately handle traffic originating from
such ASes; (2) Peering decisions: Upstream providers could
use AS reputation scores as an additional source of infor-
mation to make peering decisions, for example by charging
higher costs to compensate for the risk of having a low rep-
utation customer or even de-peer early if reputation scores
drop significantly; (3) Prioritize investigations: law enforce-
ment and security practitioners may prioritize their investi-
gations and start early monitoring on low reputation ASes;
(4) Complement data-plane based systems: ASwatch could
be used in combination with data-plane based reputation sys-
tems, so that ASes that exhibit malicious behavior both from
the control-and data-plane points of view can be prioritized
first; (5) Strengthen existing defenses: furthermore, reputation
could be used as input to other network defenses (e.g., spam
filters, botnet detection systems) to improve their detection
accuracy.
Working with limited ground truth. We briefly summarize
the challenges that we faced due to limited ground truth, and
how we mitigated them. (1) Highly unbalanced dataset: The
ratio of malicious ASes to legitimate ASes produced a highly
unbalanced dataset. Before training we used well-known data
mining approaches to balance the dataset, by oversampling
the underrepresented class of malicious ASes (Section 4.1).
(2) Limited time period for training: We relied on the date
of the ground truth reports to estimate the period of time in
which the ASes were likely to be actively used by the at-
tackers. We were not able to obtain additional information
about the activity periods (or dormancy periods) outside the
report dates. Therefore, we designed AS ASwatch so that
it does not make a final decision for an AS based on a sin-
gle observation (i.e., a single feature vector). Instead, we
introduced parameters to ensure that we label an AS as ma-
licious only if it is assigned consistently low scores for an
extended period of time. (3) Model update with adaptive
training: Because of the lack of information on the activity
periods (or dormancy periods) outside the report dates, we

were not able to periodically update our model. Therefore,
we performed a one-time training on our model using a pe-
riod of time (January–March 2010) for which we had “clean”
data. Even though ASwatch uses observations of cases of
malicious ASes in 2010, we believe that it effectively models
fundamental characteristics of malicious ASes that are still
reflected on today’s cases. This belief is supported in part by
the results of correlating ASwatch’s output with recent BGP
Ranking reports (see Section 4). In our future work, we plan
to investigate more sources of ground truth and identify other
periods of time that could be included in our training.

Limitations of the AS relationships dataset. To measure
our rewiring features, we relied on a dataset that provides
snapshots of AS relationships over years (see Section 4.1).
The relationship inference algorithm is based on the idea of
customer cones—the set of ASes an AS can reach through
its customer links. This dataset has its own set of limitations.
For example, each pair of ASes is assigned only a single re-
lationship, and visibility is limited to the monitoring points
publicly available via Routeviews. It is possible that some
business relationships may be missing, or that some false
relationships are reported. Moreover, since the dataset is pro-
vided in snapshots (one snapshot per month), we are not able
to observe rewiring activity that may be happening at a finer
time scales. Nevertheless, this AS relationships dataset has
the largest validated collection of AS relationships gathered
to date, with about 44,000 (34.6%) of the inferences validated,
and it reports the AS relationships over years, which allowed
us to track our ground truth ASes over an extended period of
time.

Evasion. Naturally, as for any other detection system,
ASwatch may face the challenge of sophisticated attackers
who attempt to evade it. For example, an attacker may attempt
to manage her AS to mimic the BGP behavior of legitimate
ASes. However, we should notice that ASwatch relies heav-
ily on rewiring features, which capture how an AS connects
with other ASes, including upstream providers. Mimicking
legitimate behavior to evade ASwatch would mean that the
malicious AS has to become “less agile”. In turn, being
less agile may expose the AS to de-peering by its upstream
providers as a consequence of accumulating abuse complaints.
For example, if McColo (which was taken down in 2008) had
not changed ten upstream providers before it was taken down,
it might have been taken down much sooner.

Future work. We plan to expand our set of features to capture
other types of behavior, such as making peering arrangements
for specific prefixes. We intend to expand our sources of
bullet-proof hosting ASes, so that we test ASwatch over larger
datasets and longer periods of time. We also plan to explore
how we may combine our set of control plane features with
data plane features.
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6 Related Work
We review studies of “unclean” ASes and existing AS reputa-
tion systems, as well as applications of machine learning and
signal processing to detect BGP anomalies.
Studies of “unclean” ASes. Previous studies have attempted
to identify “unclean” ASes, which are ASes with a high con-
centration of low reputation IP addresses. In contrast, we
attempt to understand the behavior of ASes that are con-
trolled and managed by attackers, rather than ASes which
are heavily abused. Collins [9] first introduced the term net-
work uncleanliness as an indicator of the tendency for hosts
in a network to become compromised. They gathered IP ad-
dresses from datasets of botnets, scan, phishing, and spam
attacks to study spatial and temporal properties of network
uncleanliness; this work found that compromised hosts tend
to cluster within unclean networks. Kalafut et al. [18]
collected data from popular blacklists, spam data, and DNS
domain resolutions. They found that a small fraction of ASes
have over 80% of their routable IP address space blacklisted.
Konte et al. [20] studied ASes that are reported by Hostexploit
and how they changed their upstream connectivity. Johnson
et al. introduced metrics for measuring ISP badness [17].
Moura et al. studied Internet bad neighborhoods aggregation.
Earlier papers have looked into IP addresses that host scam
websites or part of spamming botnets are organized intro in-
frastructures [12, 8, 38]. Finally, Ramachandran et al. found
that most spam originates from a relatively small number of
ASes, and also quantified the extent to which spammers use
short-lived BGP announcements to send spam [29, 30]. These
studies suggest that it is possible to develop an AS reputation
system based on analysis of control-plane features, which is
the focus of our work.
AS reputation systems. The state of the art in AS reputation
systems is to use features that are derived from data-plane in-
formation, such as statistics of attack traffic. Current systems
correlate data from multiple sources such as spam, malware,
malicious URLs, spam bots, botnet C&C servers, phishing
servers, exploit servers, cyber-warfare provided by other or-
ganizations or companies. Then, then rank ASes based on the
concentration of low reputations IP addresses. Organizations,
such as Hostexploit [34], Sitevet [34], and BGP Ranking [4]
rate each AS with an index based on the activity of the AS
weighted by the size of its allocated address space. FIRE [36]
examines datasets of IRC-based botnets, HTdetection-based
botnets, drive-by-download and phishing hosts and scores
ASes based on the longevity of the malicious services they
host and the concentration of bad IP addresses that are actively
involved. ASMATRA [37] attempts to detecting ASes that
provide upstream connectivity for malicious ASes, without
being malicious themselves.

Zhang et al. [39] find that there is a correlation between net-
works that are mismanaged and networks that are responsible
for malicious activities. The authors use a mismanagement
metric to indicate which ASes may be likely to exhibit ma-
licious behaviors (e.g. spam, malware infections), which

does not necessarily indicate if an AS is actually operated
by cyber-criminals or not. In contrast, we focus on detecting
ASes that are operated by attackers, rather than ASes that
are mismanagement and likely abused. Also, [39] examined
short-lived BGP announcements as an indication of BGP mis-
configurations. Even though we also examine the duration
of prefix announcements, this is only one of the features we
use to capture control plane behavior. Our analysis shows
that this feature alone is not enough to distinguish between
legitimate and malicious ASes.

Roveta et al. [33] developed BURN, a visualization tool,
that displays ASes with malicious activity, with the purpose to
identify misbehaving networks. In contrast to these reputation
systems that rely on data-plane observations of malicious
activity from privileged vantage points, ASwatch establishes
AS reputation using control-plane (i.e., routing) features that
can be observed without privileged vantage points and often
before an attack.
Machine learning and signal processing approaches.
These approaches detect BGP anomalies (e.g., burstiness),
with the goal to help system administrators diagnose problem-
atic network behaviors, but they do not provide a connection
between BGP anomalies and criminal activity. In contrast
to these approaches, ASwatch attempts to capture suspicious
control-plane behavior (e.g., aggressive change of connec-
tivity, short BGP announcements) with the goal to detect
malicious ASes. Prakash et al. developed BGPlens, which
monitors anomalies by observing statistical anomalies in BGP
updates based on analysis of several features, including self-
similarity, power-law, and lognormal marginals [28]. Simi-
larly, Mai [26], Zhang [40] and Al-Rousan [3] have examined
BGP update messages using tools based on self-similarity and
wavelets analysis hidden Markov models to design anomaly
detection mechanisms.

7 Conclusion
This paper presented ASwatch, the first system to derive AS
reputation based on control-plane behavior. ASwatch is based
on the intuition that malicious ASes exhibit “agile” control-
plane behavior (e.g., short-lived routes, aggressive rewiring).
We evaluated ASwatch on known malicious ASes and found
that it detected 93% of malicious ASes with a 5% false pos-
itive rate. When comparing to BGP Ranking, the current
state-of-the-art AS reputation system, we found that ASwatch
detected 72% of reported malicious ASes, whereas BGP rank-
ing detected only 34%. These results suggest that ASwatch
can better help network operators and law enforcement take
swifter action against these ASes that continue to remain
sources of malicious activities. Possible remediations could
be assessing the risk of peering with a particular AS, priori-
tizing investigations, and complementing existing defenses
that incorporate other datasets.
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