SIGCOMM Preview Session: Data Center Networking (DCN)

George Porter, UC San Diego
2015

These slides are licensed under a Creative Commons Attribution-NonCommercial-ShareAlike 4.0 International license
“The cloud”
“The cloud”
“The Cloud” = Lots of computing and data
“The Cloud” = Lots of computing and data
“The Cloud” = Lots of computing and data

Data + amazon.com = App 1
“The Cloud” = Lots of computing and data

Data + [amazon.com] =

App 1

App 2
“The Cloud” = Lots of computing and data

Data + \textit{amazon.com} =

App 1

App 2

App 3
“The Cloud” = Lots of computing and data
“The Cloud” = Lots of computing and data
Computing and data has to live somewhere...
Inside a data center
Inside a data center

• 10s or 100s of thousands of servers
Inside a data center

- 10s or 100s of thousands of servers
- Petabytes of data storage
Inside a data center

• 10s or 100s of thousands of servers
• Petabytes of data storage
• Single “applications” spread across many thousands of servers (e.g., Amazon.com)
 – Application components such as caches, web servers, data bases, distributed file servers, ...
 – Each component is “scaled” to meet needs of millions of users
Why study DCNs?
Why study DCNs?

• Scale
 – Google: 0 to 1B users in ~15 years
 – Facebook: 0 to 1B users in ~10 years
 – *Must operate at the scale of O(1M+) users*
Why study DCNs?

• Scale
 – Google: 0 to 1B users in ~15 years
 – Facebook: 0 to 1B users in ~10 years
 – Must operate at the scale of $O(1M+)$ users

• Cost:
 – To build: Google ($3B/year), MSFT ($15B/total)
 – To operate: 1-2% of global energy consumption*
 – Must deliver apps using efficient HW/SW footprint

* LBNL, 2013.
What defines a data center network?

<table>
<thead>
<tr>
<th>The Internet</th>
<th>Data Center Network (DCN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>The Internet</td>
<td>Data Center Network (DCN)</td>
</tr>
<tr>
<td>Many autonomous systems (ASes)</td>
<td>One administrative domain</td>
</tr>
<tr>
<td>Distributed control/routing</td>
<td>Centralized control and route selection</td>
</tr>
<tr>
<td>Single shortest-path routing</td>
<td>Many paths from source to destination</td>
</tr>
<tr>
<td>Hard to measure</td>
<td>Easy to measure, but lots of data…</td>
</tr>
<tr>
<td>Standardized transport (TCP and UDP)</td>
<td>Many transports (DCTCP, pFabric, …)</td>
</tr>
<tr>
<td>Innovation requires consensus (IETF)</td>
<td>Single company can innovate</td>
</tr>
<tr>
<td>“Network of networks”</td>
<td>“Backplane of giant supercomputer”</td>
</tr>
</tbody>
</table>
What defines a data center network?

<table>
<thead>
<tr>
<th>The Internet</th>
<th>Data Center Network (DCN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many autonomous systems (ASes)</td>
<td>One administrative domain</td>
</tr>
</tbody>
</table>
What defines a data center network?

<table>
<thead>
<tr>
<th>The Internet</th>
<th>Data Center Network (DCN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many autonomous systems (ASes)</td>
<td>One administrative domain</td>
</tr>
<tr>
<td>Distributed control/routing</td>
<td>Centralized control and route selection</td>
</tr>
</tbody>
</table>
What defines a data center network?

<table>
<thead>
<tr>
<th>The Internet</th>
<th>Data Center Network (DCN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many autonomous systems (ASes)</td>
<td>One administrative domain</td>
</tr>
<tr>
<td>Distributed control/routing</td>
<td>Centralized control and route selection</td>
</tr>
<tr>
<td>Single shortest-path routing</td>
<td>Many paths from source to destination</td>
</tr>
</tbody>
</table>

Internet

- Many autonomous systems (ASes)
- Distributed control/routing
- Single shortest-path routing

Data Center Network (DCN)

- One administrative domain
- Centralized control and route selection
- Many paths from source to destination

Innovation requires consensus (IETF)

“Network of networks”

“Backplane of giant supercomputer”
What defines a data center network?

<table>
<thead>
<tr>
<th>The Internet</th>
<th>Data Center Network (DCN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many autonomous systems (ASes)</td>
<td>One administrative domain</td>
</tr>
<tr>
<td>Distributed control/routing</td>
<td>Centralized control and route selection</td>
</tr>
<tr>
<td>Single shortest-path routing</td>
<td>Many paths from source to destination</td>
</tr>
<tr>
<td>Hard to measure</td>
<td>Easy to measure, but lots of data...</td>
</tr>
</tbody>
</table>
What defines a data center network?

<table>
<thead>
<tr>
<th>The Internet</th>
<th>Data Center Network (DCN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many autonomous systems (ASes)</td>
<td>One administrative domain</td>
</tr>
<tr>
<td>Distributed control/routing</td>
<td>Centralized control and route selection</td>
</tr>
<tr>
<td>Single shortest-path routing</td>
<td>Many paths from source to destination</td>
</tr>
<tr>
<td>Hard to measure</td>
<td>Easy to measure, but lots of data…</td>
</tr>
<tr>
<td>Standardized transport (TCP and UDP)</td>
<td>Many transports (DCTCP, pFabric, …)</td>
</tr>
</tbody>
</table>
What defines a data center network?

<table>
<thead>
<tr>
<th>The Internet</th>
<th>Data Center Network (DCN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many autonomous systems (ASes)</td>
<td>One administrative domain</td>
</tr>
<tr>
<td>Distributed control/routing</td>
<td>Centralized control and route selection</td>
</tr>
<tr>
<td>Single shortest-path routing</td>
<td>Many paths from source to destination</td>
</tr>
<tr>
<td>Hard to measure</td>
<td>Easy to measure, but lots of data...</td>
</tr>
<tr>
<td>Standardized transport (TCP and UDP)</td>
<td>Many transports (DCTCP, pFabric, ...)</td>
</tr>
<tr>
<td>Innovation requires consensus (IETF)</td>
<td>Single company can innovate</td>
</tr>
</tbody>
</table>
What defines a data center network?

<table>
<thead>
<tr>
<th>The Internet</th>
<th>Data Center Network (DCN)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Many autonomous systems (ASes)</td>
<td>One administrative domain</td>
</tr>
<tr>
<td>Distributed control/routing</td>
<td>Centralized control and route selection</td>
</tr>
<tr>
<td>Single shortest-path routing</td>
<td>Many paths from source to destination</td>
</tr>
<tr>
<td>Hard to measure</td>
<td>Easy to measure, but lots of data…</td>
</tr>
<tr>
<td>Standardized transport (TCP and UDP)</td>
<td>Many transports (DCTCP, pFabric, …)</td>
</tr>
<tr>
<td>Innovation requires consensus (IETF)</td>
<td>Single company can innovate</td>
</tr>
<tr>
<td>“Network of networks”</td>
<td>“Backplane of giant supercomputer”</td>
</tr>
</tbody>
</table>
DCN research “cheat sheet”
DCN research “cheat sheet”

• How would you design a network to support 1M endpoints?
DCN research “cheat sheet”

• How would you design a network to support 1M endpoints?

• If you could...
 – Control all the endpoints and the network?
 – Violate layering, end-to-end principle?
 – Build custom hardware?
 – Assume common OS, dataplane functions?
DCN research “cheat sheet”

• How would you design a network to support 1M endpoints?

• If you could...
 – Control all the endpoints and the network?
 – Violate layering, end-to-end principle?
 – Build custom hardware?
 – Assume common OS, dataplane functions?

 Top-to-bottom rethinking of the network
Paper previews: Topologies
Tree-based network topologies

Tree-based network topologies

100,000 x 10 Gb/s = 1 Pb/s
Tree-based network topologies

Can’t buy sufficiently fast core switches!

100,000 x 10 Gb/s = 1 Pb/s
Folded-Clos multi-rooted trees
Folded-Clos multi-rooted trees

Al Fares, et al., Sigcomm’08
Folded-Clos multi-rooted trees
Folded-Clos multi-rooted trees

Al Fares, et al., Sigcomm’08
Folded-Clos multi-rooted trees

Bandwidth needs met by massive multipathing

10 Gb/s Switches
10 Gb/s servers

Al Fares, et al., Sigcomm'08
Paper previews: Topologies

• **Jupiter Rising: A Decade of Clos Topologies and Centralized Control in Google’s Datacenter Network** *(Singh et al.)*
 – Tu 5pm-6:15pm Session 3.2: Experience Track: 2
 – 10 year retrospective on Google’s experiences building large-scale networks

• **Condor: Better Topologies through Declarative Design** *(Schlinker et al.)*
 – Th 8:50am - 10:30am Session 8: Data center networking
 – Describing and reasoning about the network structure
Paper previews: Measurement
Network measurement
Network measurement

• Measuring the Internet:
 – No central vantage point, only indirect access to certain portions, multiple ASes hiding information...
Network measurement

• Measuring the Internet:
 – No central vantage point, only indirect access to certain portions, multiple ASes hiding information...
• Measuring data centers:
 – Need low latency
 – Need fine-grained precision (milli- or microsecond)
 – An enormous amount of data to collect
 – Hard to publish findings (proprietary data sets)
Paper previews: Measurement (1/2)

• *Inside the Social Network's (Datacenter) Network (Roy et al.)*
 – Tu 4pm-4:50pm Session 3.1: Experience Track 1
 – Measurement study of Facebook’s data center

• *Pingmesh: A Large-Scale System for Data Center Network Latency Measurement and Analysis (Guo et al.)*
 – Tu 4pm-4:50pm Session 3.1: Experience Track 1
 – Experience paper on Microsoft’s system for collecting inter-server ping times at scale
Packet-Level Telemetry in Large Datacenter Networks (Zhu et al.)

– Th 8:50am - 10:30am Session 8: Data center networking
– Packet tracing system deployed at Microsoft designed for finding network faults
Paper previews:
Packet/flow handling
Packet and flow handling
Packet and flow handling

• Internet service model:
 – Best-effort, “end-to-end principle”, generally just one path to a destination
Packet and flow handling

- Internet service model:
 - Best-effort, “end-to-end principle”, generally just one path to a destination

- Data center networks:
 - Load balancing: how to effectively use all the many paths to a given destination?
 - Better than best-effort: how to prioritize, rate-limit, adjust relative sending rates...
Paper previews: Packet/flow handling

• **Presto: Edge-based Load Balancing for Fast Datacenter Networks (He et al.)**
 - Th 8:50am - 10:30am Session 8: Data center networking
 - Choosing paths for packets with help from endhosts

• **Enabling End-Host Network Functions (Ballani et al.)**
 - Th 8:50am - 10:30am Session 8: Data center networking
 - Providing better than best-effort handling of packets with help from endhosts
In closing

• DCN is an exciting, fun research area
• While many papers are from Microsoft, Google, Facebook, ...
 – YOU have the ability to have enormous impact
 – Many projects are open-source
 • E.g., http://opencompute.org
• Rethink the entire network stack!
 – Hardware, software, protocols, OS, NIC, ...