Scaling Up Clustered Network Applications with
ScaleBricks — Public Review

Bruce Davie
VMware, Inc.
Palo Alto, CA, USA
bdavie@vmware.com

The idea of using clusters of commodity processors
to perform packet processing is at this point a well-
established technique. RouteBricks is probably the most
well-known example of this approach. The telecommu-
nications industry is now embracing the idea that many
tasks that have traditionally been performed on special-
ized hardware might reasonably be performed on com-
modity processors.

Because a single commodity processor typically for-
wards packets at a much lower rate than an ASIC, it’s
often necessary to deploy clusters of processors to per-
form tasks that had previously been performed by a
single hardware appliance. This raises a number of chal-
lenges around scalability—ideally, adding more proces-
sor nodes should increase the capacity of the system
linearly.

ScaleBricks is motivated by the observation that “ca-
pacity” is a multi-faceted quantity. Not only does the
cluster need to increase in throughput as nodes are
added but, in some applications, the number of forward-
ing entries that it can handle also needs to scale up.
The authors refer to this as FIB (Forwarding Informa-
tion Base) scaling. The update rate of the FIB should
also scale up. This leads to a design where the FIB is
partitioned across the nodes—no single node holds the
entire FIB. With such a design, each packet will poten-
tially hit a node in the cluster that doesn’t have all the
forwarding information for that packet. This leads to
the central design challenge of the paper: to design ef-
ficient algorithms to forward a packet from the ingress
node to the node that has the full information necessary
to process the packet (the handling node).

In addition to scaling, forwarding latency is also a
design consideration. The partitioning of the FIB re-
quires that most packets are touched by at least two
nodes (ingress node and handling node). The Scale-
Bricks design seeks to bound the number of nodes that
touch the packet to two, using a hardware switch to
forward packets from ingress node to handling node.
This contrasts with alternative approaches that use in-
termediate processor nodes to forward packets across
the cluster.

Lest this design space seem arbitrarily constrained,
the paper uses a motivating example from a real prod-
uct, the cellular network-to-Internet gateway of an LTE
mobile network. Such gateways maintain per-flow state
at the handling nodes, and also are constrained in the
allocation of flows to handling nodes by external factors.
Thus the problem of getting an incoming packet to its
correct handling node is very real in this scenario, and
can’t be easily worked around (e.g., by using a simple
hash to assign flows to nodes).

With this setup, the paper then works through a
clever series of innovations to solve the stated problem:
figure out how to map an incoming packet to its correct
handling node without storing a complete FIB at every
node. The key to this approach is to use a “global parti-
tion table” (GPT)—a compact data structure that can
efficiently direct each incoming packet to the correct
handling node, using much less space than a full FIB
would require. The details of how this table is built
and why it works are clearly spelled out in the paper.

There remain a few limitations. First, the FIB par-
titioning approach does not scale indefinitely. At small
numbers of nodes, FIB capacity scales almost linearly
with node count, but drops off quickly, with no improve-
ment at all after 32 nodes. This suggests the approach
will be valuable for some applications but not others,
depending on the FIB requirements.

It’s also worth noting that update rates remain a pos-
sible area of concern. While partitioning the FIB across
nodes should improve update rates relative to FIB repli-
cation (only one node needs to be updated for a given
FIB change), the GPT structure is not especially effi-
cient at handling updates.

The largest concern for the PC was the breadth of ap-
plicability. While the work is presented as being quite
general, it does seem that the constraints on the design
space must line up in a particular way for ScaleBricks to
be the right answer. The authors rightly note that find-
ing other applications that will benefit from this inter-
esting system design is an area for further investigation.
ScaleBricks looks to be an innovative packet processing
system in search of further applications.



