
PGA: Using Graphs to Express and Automatically
Reconcile Network Policies

Nate Foster
Cornell University
Ithaca, NY, USA

jnfoster@cs.cornell.edu

Network operators must often combine several differ-
ent policies into a single coherent policy that faithfully
encodes the constraints of each input. For example,
the operator of a large enterprise network might com-
bine a policy requiring all web traffic to traverse a load
balancer with another stipulating that all external traf-
fic must traverse a firewall. The combined policy would
need to route external web traffic across a load balancer
and a firewall.
Composing policies correctly turns out to be chal-

lenging, especially when they are expressed in terms
of low-level constructs such as access control lists or
switch forwarding rules. High-level programming lan-
guages such as Pyretic and NetKAT offer composition
operators that avoid these issues in some cases, but
none of them guarantee that the joint intent of the
policies being combined will be preserved in general.
Instead, programmers must perform intricate rewrit-
ings on policies—decomposing the inputs into their con-
stituent pieces, and then manually reassembling them
to produce the desired result.
This paper presents a new framework, Policy Graph

Abstraction (PGA), that is designed to overcome these
challenges. In PGA, operators express policies in terms
of intuitive, graph-based abstractions in which nodes
represent groups of end hosts or network functions, and
edges indicate allowed communication. Optional an-
notations constrain the types of traffic that may flow
over edges, and restrict the policies the graph may be
validly composed with. A syntactic policy composition
operator combines several different policy graphs into
a single graph that encodes the constraints of each in-
put (or fails if it is impossible to do so). It works by
normalizing the input policies so that each end host
group is disjoint, and merging sequences of network
functions so that all paths in the composed policy tra-
verse the sequences specified in the inputs. PGA has
been implemented in Python and evaluated on a col-
lection of benchmarks including several synthetic appli-
cations and a real-world access control policy from a

large enterprise. The composition of tens of thousands
of policies can be computed in less than ten minutes.
The scalability of the tool depends critically on PGA’s
use of end host groups, which decouple the expression
of policy for various traffic classes from the mapping
between individual end hosts and groups.
The SIGCOMM reviewers were excited about this pa-

per because it addresses a tricky problem that arises in
many organizations, especially ones in which there are
multiple policy sub-domains. The idea of abstracting
away low-level implementation details to enable more
flexible composition is simple and powerful. The graph-
based abstractions provided in PGA are elegant and
closely match how many network operators think about
policy at an intuitive level. PGA also resembles some of
the group- and intent-based frameworks that are being
actively developed in industry. Hence, it seems likely
that the abstractions and algorithms that are developed
in this paper will have broad appeal and lasting impact.
PGA is not the final word on high-level policy for-

malisms and there are many promising directions for
future research. The paper does not deal with the is-
sue of policy compilation—i.e., how to translate poli-
cies into low-level configurations for switches, middle-
boxes, and end hosts. It does not offer an independent
description of the semantics of policies, which means
the expressiveness of the framework is not easy to an-
alyze and questions about properties of the composi-
tion operator—e.g., is composition associative, commu-
tative, and idempotent?—can only be answered by un-
derstanding the implementation. Although the initial
experimental results that quantify the costs of compo-
sition are promising, it remains to be seen how well a
system based on PGA would perform in practice.
Overall, PGA offers an elegant solution to the difficult

problem of expressing and composing multiple policies.
It represents a significant contribution to the literature
on policy formalisms and should trigger a lot of discus-
sion and follow-up work.


