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Traffic is routed across the Internet by Autonomous
Systems, or ASes, such as ISPs, corporations, and
universities. To route traffic reliably and securely,
ASes must configure their Border Gateway Protocol
(BGP) routers to implement policies restricting how
routing announcements can be used and exchanged
with other ASes.

It is challenging to correctly implement BGP poli-
cies in low-level configuration languages. Large ASes
maintain millions of lines of frequently-changing con-
figurations that run distributed across hundreds of
routers [8, 16]. Router misconfigurations are com-
mon and have led to highly visible failures affecting
ASes and their billions of users. For example, in 2009
YouTube was inaccessible worldwide for several hours
due to a misconfiguration in Pakistan [2], and in 2010
and 2014 China Telecom hijacked significant but un-
known fractions of international traffic for extended
periods [4, 15, 11, 10]. Goldberg surveys several addi-
tional major outages and their causes [7].

We present the first mechanized formal semantics
of the BGP specification RFC 4271 [14], and we show
how to use this semantics to develop reliable tools and
guidelines that help BGP administrators avoid router
misconfiguration. In contrast to previous semantics [6,
3, 17], our semantics is fully formal (it is implemented
in the Coq proof assistant), and it models all required
features of the BGP specification modulo low-level
details such as bit representation of update messages
and TCP.

To provide evidence for the correctness and use-
fulness of our semantics: 1) we have extended and
formalized the pen-and-paper proof by Gao & Rex-
ford on the convergence of BGP, revealing necessary
extensions to Gao & Rexford’s original configuration
guidelines; 2) we have built the Bagpipe tool which
automatically checks that BGP configurations adhere
to given policy specifications, revealing 19 apparent
errors in three ASes with over 240,000 lines of BGP

configuration; and 3) we have tested the BGP simula-
tor C-BGP, revealing one bug.

1. Extending and Formalizing Gao & Rexford
Gao & Rexford [6] proposed a set of guidelines for
BGP router configuration, and they proved Internet-
wide route convergence if these guidelines are imple-
mented by every AS on the Internet.

The pen-and-paper proof by Gao & Rexford makes
various simplifying assumptions about the BGP proto-
col. For example, routers have access to all the routes
received by other routers within the same AS, routes
are not transferred over a network but are instantly
accessible whenever a router is activated, and route
announcements cannot be withdrawn.

We used our semantics to extend and formalize Gao
& Rexford’s informal proof. Because our semantics of
RFC 4271 eliminates the aforementioned simplifying
assumptions, the proof requires additional insights.
For example, because our semantics models both intra-
domain and inter-domain routing, we have to prove
intra-domain convergence of each AS, which requires
an extension to Gao & Rexford’s original guidelines.

2. Building Bagpipe Bagpipe1 provides a declar-
ative domain-specific language that enables BGP ad-
ministrators to express control-plane policy specifi-
cations, such as “an AS’s routers will never accept
routes for invalid IP addresses”, “an AS’s routers will
always forward certain routes to other ASes”, and “an
AS’s routers will always prefer routes from customers
over routes from providers”. Given a specification
expressed in this language, Bagpipe invokes an SMT
solver to automatically verify that an AS’s router con-
figurations satisfy the given specification. Using our
semantics, we formally verified that Bagpipe is sound,
i.e. it will never falsely claim that an AS correctly

1Bagpipe is open-source, see http://bagpipe.uwplse.org/.
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implements a specification.

Bagpipe’s domain-specific language is rich enough
to express specifications inferred from real AS config-
urations, express specifications found in the literature
(such as the Gao-Rexford guidelines [6] and prefix-
based filtering [12]), and express specifications for
10 configuration scenarios from the Juniper TechLi-
brary [9, 1]. The Bagpipe verifier works out-of-the-box
for existing Juniper and Cisco router configurations,
and the above specifications. To evaluate Bagpipe’s ef-
ficiency, we applied it to three ASes with over 240,000
lines of Cisco and Juniper BGP configuration. Bag-
pipe found 19 apparent errors without issuing any
false positives.

3. Testing C-BGP Using our semantics, we per-
formed randomized differential testing [5] against C-
BGP [13], a popular open-source BGP simulator. To
this end, we developed a test harness which generates
a random BGP network (including topology, router
configurations, and initial routes) and then passes it
to C-BGP. C-BGP runs a simulation of the BGP
network, leading to a trace that captures all the route
announcements exchanged by the routers in the BGP
network, and the routes installed in each router’s rout-
ing information bases. The test harness then checks
that this trace is permitted under our semantics.

We ran this test harness over 100,000 times on
randomly generated BGP networks. Some tests re-
vealed that C-BGP occasionally sends announcements
even when the routes they are advertising have not
changed. This is not permitted by Section 9.2 of
the BGP specification, and it is therefore rejected by
our semantics. We reported this bug, the C-BGP
maintainer acknowledged it, and we fixed it.

Conclusion We have defined a formal, mechanized
semantics for BGP in Coq. We used it to extend and
formalize BGP configuration guidelines, to build and
verify a BGP checker, and to test a BGP simulator.
These activities provide evidence that our semantics
is correct and is useful for the development of reliable
tools and guidelines that help BGP administrators
avoid router misconfiguration.
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