
Towards Correct-by-Construction SDN

Leonid Ryzhyk1, Nikolaj Bjørner2, Marco Canini3, Jean-Baptiste Jeannin1, Nina Narodytska1, Cole
Schlesinger1, Douglas B. Terry1, and George Varghese2

1Samsung Research America 2Microsoft Research 3Université catholique de Louvain

High-level SDN languages raise the level of abstraction in
SDN programming from managing individual switches to pro-
gramming network-wide policies. In this talk, we present Co-
coon (for Correct by Construction Networking), an SDN pro-
gramming language designed around the idea of iterative re-
finement. The network programmer starts with a high-level de-
scription of the desired network behavior, focusing on the ser-
vice the network should provide to each packet, as opposed to
how this service is implemented within the network fabric. The
programmer then iteratively refines the top-level specification,
adding details of the topology, routing, fault recovery, etc., un-
til reaching a level of detail sufficient for the Cocoon compiler
to generate an SDN application that manages network switches
via the southbound interface (we currently support P4 [3]). We
designed Cocoon with the following goals in mind:
Correctness Cocoon uses the Corral model checker [6] to es-
tablish that each refinement correctly implements the behavior
it refines, ensuring that behaviors specified at any refinement
step hold on the resulting SDN application.
Generality Cocoon enables a wide range of SDN applica-
tions, ranging from network virtualization, through software-
defined IXPs, to home networks.
Dynamism A Cocoon program specifies both data and con-
trol plane behavior, akin to languages like FlowLog [7],
Maple [9], and VeriCon [2]. This is in contrast to languages
such as NetKAT [1], which specify a snapshot of data plane be-
havior but rely on a general-purpose programming language to
implement the control plane by emitting a stream of snapshots
in response to network events.
Flexibility Existing high-level languages rely on fixed com-
pilation strategies in mapping the high-level network program
to a switch-level implementation. Cocoon allows the program-
mer to specify how each high-level component is implemented
and deployed, while automatically verifying the correctness of
the implementation.

Refinements are performed either manually or automatically.
In the latter case, the user picks one of an extensible set of
refinement tactics. A tactic can be as simple as instantiating
shortest-path routing within a segment of the network, or as
complicated as the global NetKAT compilation algorithm [8].
The user is free to apply different tactics to different parts of the
network. Whenever no existing tactic matches application re-
quirements, the user can implement their own custom solution
via a manual refinement.

Refinements are performed in a modular way, with every re-

finement confined to a single component of the network. Mod-
ularity is enforced at the language level: a Cocoon program de-
fines a number of roles, where each role models a group of sim-
ilar entities, e.g., top-of-rack switches, virtual network function
instances, or a segment of the switching fabric. A refinement
replaces one or more roles with a more detailed implementa-
tion, possibly splitting them into multiple roles.

The modular refinement process facilitates clean separation
of concerns and ensures that each individual refinement is
amenable to automatic formal verification. The Cocoon ver-
ifier proves for each refinement that the refined specification
is functionally equivalent to the role it refines. Correctness of
each refinement in the chain guarantees that the final specifica-
tion is functionally equivalent to the top-level specification.

In this talk, we will present the Cocoon’s design philoso-
phy, outline its syntax and semantics, and report on several case
studies where we use Cocoon to synthesize and verify a range
of SDN applications, including network virtualization, service
chaining, a B4-style WAN [5], and an Internet exchange [4]. In
all these case studies, Cocoon is able to synthesize and verify
complex dynamic networks in a matter of seconds.

References
[1] C. J. Anderson, N. Foster, A. Guha, J.-B. Jeannin, D. Kozen,

C. Schlesinger, and D. Walker. Netkat: Semantic foundations for networks.
In POPL’14, San Diego, CA, USA, 2014.

[2] T. Ball, N. Bjørner, A. Gember, S. Itzhaky, A. Karbyshev, M. Sagiv,
M. Schapira, and A. Valadarsky. VeriCon: Towards verifying controller
programs in software-defined networks. In PLDI’14, Edinburgh, United
Kingdom, 2014.

[3] P. Bosshart, D. Daly, G. Gibb, M. Izzard, N. McKeown, J. Rexford,
C. Schlesinger, D. Talayco, A. Vahdat, G. Varghese, and D. Walker. P4:
Programming protocol-independent packet processors. SIGCOMM Com-
put. Commun. Rev., 44(3):87–95, July 2014.

[4] A. Gupta, R. MacDavid, R. Birkner, M. Canini, N. Feamster, J. Rexford,
and L. Vanbever. An industrial-scale software defined internet exchange
point. In NSDI’16, Santa Clara, CA, USA, 2016.

[5] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski, A. Singh, S. Venkata,
J. Wanderer, J. Zhou, M. Zhu, J. Zolla, U. Hölzle, S. Stuart, and A. Vah-
dat. B4: Experience with a globally-deployed software defined WAN. In
SIGCOMM’13, Hong Kong, China, 2013.

[6] A. Lal, S. Qadeer, and S. K. Lahiri. A solver for reachability modulo
theories. In CAV’12, Berkeley, CA, USA, 2012.

[7] T. Nelson, A. D. Ferguson, M. J. G. Scheer, and S. Krishnamurthi. Tierless
programming and reasoning for software-defined networks. In NSDI’14,
Seattle, WA, 2014.

[8] S. Smolka, S. Eliopoulos, N. Foster, and A. Guha. A fast compiler for
NetKAT. In ICFP’15, Vancouver, BC, Canada, 2015.

[9] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hudak. Maple: Simplify-
ing sdn programming using algorithmic policies. In SIGCOMM’13, Hong
Kong, China, 2013.


