IQ for DNA

Interactive Query for Dynamic Network Analytics

Haoyu Song
Motivation

- **Service Provider’s pain point**
 - Lack of real-time and full visibility of networks, so the network monitoring and optimization capability is limited

- **Network visibility by data analytics is a SDN killer application**
 - Theoretically global view
 - First half of the full SDN control loop
 - For network planning, engineering, security, diagnosis

- **Network visibility is a big data problem**
 - Need standards for data collection, encapsulation, and presentation
 - Need to dig data plane potential for better data collection and preprocessing
 - Data source needs to cover the entire infrastructure
Requirements for Network Analytics (1)

- Network data analytics must be dynamic
 - Why static methods doesn’t work
 - Difficult to predict all probe & measurement tasks in advance at design time
 - Pre-allocate resources for all potential data collection and processing tasks in data plane is prohibitively expensive
 - Data plane reconfiguration for new emerging tasks is too slow and can cause service interrupt
 - Therefore, Dynamic Network Analytics (DNA) is needed
 - Incremental real-time and on-demand reconfiguration
 - Anytime, anywhere, & any action with dynamic resource allocation
 - Hitless in-service data plane modification
 - One data plane supports multiple parallel data analytical applications
Requirements for Network Analytics (2)

- **Decoupled network data analytics is inefficient**
 - Raw data drawn for data plane consumes control bandwidth and incurs long latency
 - No standard interface existing between the analytical application and SDN controller
 - Limited data extraction capability due to the inflexible data plane

- **Network analytics should rely more on in-network computing**
 - Close to the data source
 - Use processing capability of data path chip and local control processor

- **An integrated DNA system is needed**
Enabling Data Plane Technologies

- **Programmable data plane**
 - Allow customize the data plane forwarding application
 - Allow dynamically modifying the data plane behavior
 - Allow arbitrary actions on packets

- **Server-grade local control plane**
 - Enhanced CPU, memory, non-volatile storage and interconnection bandwidth with forwarding chips
 - Scale-out routers have dedicated server or server cluster as local control plane
 - Micro-service and VNF can be deployed in local processor

- **Affinitive, integrated, and efficient DNA implementation**
 - Combining the above two technologies, each network node can directly become a part of the big data analytical application software stack
 - Programming is the key to achieve this
What is the Gap

• **Programming model**
 • Common query API
 • Map Reduce

• **Programming language**
 • Interactive programming: real-time and on-demand
 • JIT compiler & common runtime interface
 • Programming abstraction

• **Target platform**
 • NP – fully programmable, but sensitive to modification
 • CPU – no distinction of data path and local control
 • ASIC – limited flexibility

• **Ecosystem**
 • Infrastructure scale visibility – E2E coverage
 • Virtual and physical platforms
Dynamic Network Probes

• DNP is data probe deployed at designated locations in data path at runtime
 • In-network stateful processing — control-data plane bandwidth efficiency
 • Dynamic resource allocation — data plane resource efficiency

• DNP is essentially a finite state machine for data preprocessing
 • Counter
 • Event trigger
 • Packet filter and sampler

• DNP has many advantages
 • Realtime deploy and revoking
 • Reduce bandwidth between data path and controller
 • Reduce overall latency of data analytical applications
Programming Model – Standard Query API

- API is used to define the data plane probing capability
 - Isolate malicious attacks
 - Good for backend compiler
- What’s the right level of API abstraction?
 - Application and data plane, which should be smarter and more knowledgeable?
 - SQL-like API is feasible
 - Any more possibilities?

network data analytics

dynamic transactional query

present

compile

analyze

disseminate

collect

configure

E2E network
Programming Model – Network Map Reduce

• Explore similarity between SDN architecture and MR programming model
 • Data plane NE can serve as mappers and/or reducers
 • Controller can serve as job dispatcher and tracker
Network Map Reduce Architecture

- `map()` is executed in both NE data path chip and local control
- `reduce()` is executed in NE local control or server at central controller
Use Cases for NMR

• **DDoS Attack Detection**
 - Pick all portal switches as mappers and a few other switches as reducers
 - map()
 - Forwarding chip filters all unique flows which go to the target servers
 - Local processor calculate \{k, v\} pairs
 - reduce()
 - Calculate global \{k, sum(v)\} pairs and trigger alarm if threshold is passed

• **Traffic Matrix**
 - Pick all edge routers as mappers and a few other routers as reducers
 - map()
 - Forwarding chip labels each ingress packets with router id and keeps statistics for all egress packets from each edge router
 - Local processor read the counter periodically and push the \{k v\} pairs to reducers
 - reduce()
 - Summarize mapper inputs and generate the traffic matrix

• **Many other applications**
 - e.g., network congestion monitoring, elephant flow detection
 - As long as the application can be partitioned into two distributed functions
Research Challenges

- **Dynamic Network Probes**
 - Safety and Security
 - Consistency and Synchronization
 - Performance impact
 - Chip architecture

- **Interactive Programming/Query Language**
 - Parallel task orchestration
 - High level data analytical primitives
 - Streaming network system
 - Programming model and corresponding compiler
Prototype on Protocol Oblivious Forwarding

POF IR
POF SBI
POF Device

P4/C forwarding app
probe & measure app

POF IR
POF SBI
POF Device

Demo Use Cases
- DNA API
- DNP Compiler
- POF Interface
- vSwitch (OVS)
- NE40E-based Prototype

SDN Controller integration

Prototyped on a router platform with 200G NPU-based line card
Performance Evaluations

<table>
<thead>
<tr>
<th></th>
<th>Compiling Latency</th>
<th>Configuration Latency</th>
<th>Total</th>
</tr>
</thead>
<tbody>
<tr>
<td>Static Programming</td>
<td>1 s</td>
<td>1 s</td>
<td>2 s</td>
</tr>
<tr>
<td>DNP</td>
<td>0</td>
<td>50 ms</td>
<td>50 ms</td>
</tr>
</tbody>
</table>

~40 times latency gain when deploying a counter probe

DNP’s performance impact when deploying counter probes
Related Works

- In-band Network Telemetry (INT) & In-band OAM
 - Static programming, not real time
- Compiling Path Queries
 - For Openflow forwarding model only
- Stream Map Reduce
 - Standalone system
Conclusion

• Network analytics need runtime interactive data plane queries
 • Dynamically programmable data plane is needed
 • In-network computing is needed
• Multiple programming model exists
 • Common APIs
 • Network Map Reduce
• Dynamic Network Probe is a key element for DNA
 • POF is ideal for real-time and on-demand DNP
 • Prototyped with high performance
• Open research questions
 • Data analytical abstractions and primitives
 • Interactive Programming and Query languages
 • Compiler technologies for distributed networks & heterogeneous targets
Thank you

www.huawei.com