RDMA over Commodity Ethernet at Scale

Chuanxiong Guo, Haitao Wu, Zhong Deng, Gaurav Soni, Jianxi Ye, Jitendra Padhye, Marina Lipshteyn

ACM SIGCOMM 2016 August 24 2016

Outline

- RDMA/RoCEv2 background
- DSCP-based PFC
- Safety challenges
 - RDMA transport livelock
 - PFC deadlock
 - PFC pause frame storm
 - Slow-receiver symptom
- Experiences and lessons learned
- Related work
- Conclusion

RDMA/RoCEv2 background

- RDMA addresses TCP's latency and CPU overhead problems
- RDMA: Remote Direct Memory Access
 - RDMA offloads the transport layer to the NIC
 - RDMA needs a lossless network
- RoCEv2: RDMA over commodity Ethernet
 - DCQCN for connection-level congestion control
 - PFC for hop-by-hop flow control

Priority-based flow control (PFC)

- Hop-by-hop flow control, with eight priorities for HOL blocking mitigation
- The priority in data packets is carried in the VLAN tag
- PFC pause frame to inform the upstream to stop

DSCP-based PFC

- Issues of VLAN-based PFC
 - It breaks PXE boot
 - No standard way for carrying VLAN tag in L3 networks
- DSCP-based PFC
 - DSCP field for carrying the priority value
 - No change needed for the PFC pause frame

DMAC

DMAC

01-80-C2-

00-00-01

SMAC

SMAC

Supported by major switch/NIC venders

TOR

EtherType

0800

EtherType

88-08

Outline

- RDMA/RoCEv2 background
- DSCP-based PFC
- Safety challenges
 - RDMA transport livelock
 - PFC deadlock
 - PFC pause frame storm
 - Slow-receiver symptom
- Experiences and lessons learned
- Related work
- Conclusion

RDMA transport livelock

- Our data centers use Clos network
- Packets first travel up then go down
- No cyclic buffer dependency for up-down routing -> no deadlock
- But we did experience deadlock!

• Preliminaries

ARP table: IP address to MAC address mapping

MAC table: MAC address to port mapping

 If MAC entry is missing, packets are flooded to all ports

- The PFC deadlock root cause: the interaction between the PFC flow control and the Ethernet packet flooding
- Solution: drop the lossless packets if the ARP entry is incomplete
- Recommendation: do not flood or multicast for lossless traffic
- Call for action: more research on deadlocks

NIC PFC pause frame storm

- A malfunctioning NIC may block the whole network
- PFC pause frame storms caused several incidents
- Solution: watchdogs at both NIC and switch sides to stop the storm

The slow-receiver symptom

- ToR to NIC is 40Gb/s, NIC to server is 64Gb/s
- But NICs may generate large number of PFC pause frames
- Root cause: NIC is resource constrained
- Mitigation
 - Large page size for the MTT (memory translation table) entry
 - Dynamic buffer sharing at the ToR

Outline

- RDMA/RoCEv2 background
- DSCP-based PFC
- Safety challenges
 - RDMA transport livelock
 - PFC deadlock
 - PFC pause frame storm
 - Slow-receiver symptom
- Experiences and lessons learned
- Related work
- Conclusion

Latency reduction

- RoCEv2 deployed in Bing world-wide for one and half years
- Significant latency reduction
- Incast problem solved as no packet drops

RDMA throughput

- Using two podsets each with 500+ servers
- 5Tb/s capacity between the two podsets

- Achieved 3Tb/s inter-podset throughput
- Bottlenecked by ECMP routing
- Close to 0 CPU overhead

Latency and throughput tradeoff

- RDMA latencies increase as data shuffling started
- Low latency vs high throughput

Lessons learned

- Deadlock, livelock, PFC pause frames propagation and storm did happen
- Be prepared for the unexpected
 - Configuration management, latency/availability, PFC pause frame, RDMA traffic monitoring
- NICs are the key to make RoCEv2 work
- Loss vs lossless: Is lossless needed?

Related work

- Infiniband
- iWarp
- Deadlock in lossless networks
- TCP perf tuning vs. RDMA

Conclusion

- RoCEv2 has been running safely in Microsoft data centers for one and half years
 - DSCP-based PFC which scales RoCEv2 from L2 to L3
 - Various safety issues/bugs (livelock, deadlock, PFC pause storm, PFC pause propagation) can all be addressed
- Future work
 - RDMA for inter-DC communications
 - Understanding of deadlocks in data centers
 - Lossless, low-latency and high-throughput networking
 - Applications adoption