
THE DEFORESTATION OF L2
James	McCauley,	Mingjie	Zhao,	Ethan	J.	Jackson,	Barath Raghavan,
Sylvia	Ratnasamy,	Scott	Shenker
UC	Berkeley,	UESTC,	and	ICSI

The Talk

• What is	AXE?

• Why look	at	this?

• How does	it	work?

• Really?		This	actually	works?

2

The What

• An	redesign	of	L2 to	replace	Ethernet	and	
Spanning	Tree	Protocol	(and	its	variants)

• Targets	are	“normal”	enterprise	networks,	
machine	rooms,	small	private	DCs
– Not the	Googles,	Microsofts,	Rackspaces
– Not	networks	with	incredibly	highly	utilization
– Notmanaged	by	a	full-time	team	of	experts

3

The What: Goals

• Plug-and-play
– If	not,	might	as	well	just	use	L3

• Use	all	links	for	shortest	paths
– Number	one	shortcoming	of	STP

• Fast	recovery	from	failure
– Number	two	shortcoming	of	STP?

4

The What: Goals

• Plug-and-play
– If	not,	might	as	well	just	use	L3

• Use	all	links	for	shortest	paths
– Number	one	shortcoming	of	STP

• Fast Packet-timescale	recovery	from	failure
– Number	two	shortcoming	of	STP?

5

The What: Assumptions
• Failure	detection	can	be	fast
– Not	traditionally	the	bottleneck

• Control	plane	“hellos”	were	sufficient
– Need	interrupt-driven	LFS,	BFD,	etc.

• There’s	a	market	for	flood-and-learn	L2	
– Flooding/learn	has	security	implications
– No	heavy	unidirectional	traffic

• No	multi-access	links
– Everything	is	point-to-point

6

The Why: Is L2 still a problem?
• Still	many	largely-unmanaged,	small/med	L2	networks!
– Two	in	our	building	in	Berkeley!

• There	have	been	a	few	interesting	developments…
– SPB,	TRILL,	SEATTLE,	etc.
– Provide	various	tradeoffs

• AXE	attempts	to	strike	a	different	balance
– Focus	on	two	key	problems
– Keeping	things	as	simple	as	possible	(no	control	plane)

7

The Why: Context

8

	 Plug-and-play Shortest Paths Fast Recovery No Control Plane

STP 	✓ �	 	� 	�
No STP (Tree) ✓ ✓ �� 	✓

TRILL/SPB 	✓ 	✓ 	� 	�
IP (L3) � 	✓ 	� 	�

Custom 	� 	✓ ? 	�
AXE 	✓ 	✓ 	✓ 	✓
	

The How: Extend Ethernet
• Basic	flood/learn	Ethernet
–When	you	see	a	packet:	learn
–When	you	don’t	know	what	to	do:	flood

• But	AXE	does	not	need	a	tree	to	deal	with	loops
–Means	flooding	works	for	handling	failures	too
• (because	alternate	paths	are	immediately	available)

–Means	that	flood/learn	finds	short	paths
• (because	you	haven’t	removed	links)

9

The How: Treeless flooding
• How	do	you	get	around	the	loop	problem?

• Duplicate-packet-detection

• Multiple	ways	of	doing	it
• Our	focus:	hash-based	deduplication filter
– In	short:	hash	table	where	you	replace	upon	collision
– Straightforward
– Amenable	to	hardware/P4	implementation

10

The How: What changes?

• Learning	is	more	subtle
– Source	address	seen	on	multiple	ports
– Packets	may	even	be	going	backwards!

• Responding	to	failures	is	more	subtle
–Means	we	have	to	unlearn	(outdated)	state

11

The How: Extend Header

• Extend	the	packet	header	between switches
– Nonce	(per-switch	sequence	number)
• Used	for	packet	deduplication

– Hop	count
• Influences	learning,	also protects	from	loops

– Flooded	flag:	F
• Tracks	whether	a	packet	is	being	flooded

– Learnable	flag:	L	
• Tracks	whether	packet	can	be	learned	from

12

The How: Separate queues
• Switches	have	flood	queue	and	normal	queue
– The	Flooded	flag	in	the	header	determines	which
– Flood	queue	has	higher	priority	and	is	shorter
– Normal	queue	sized…	normally

• Intuition:
– Delivering	floods	quickly	stops flooding	quickly
– Deduplication only	applies	to	floods,	keeping	
fewer	floods	in	flight	makes	dedup easier

13

The How: Overview
• Extend	packet	header
– Nonce,	Hop	Count,	Flooded	/	Learnable	flags

• Learning/Unlearning	Phase
– May	learn	port	and	HC	to	src
– May	unlearn	path	to	dst if	trouble	was	observed

• Output	Phase
– If	packet	is	a	duplicate:	drop
– If	unknown-dst/path-failed/already-flooding:	flood
– Otherwise	forward	according	to	table

14

The How: Example
• A	sends	a	packet	to	B	(L:True)

– Destination	B	unknown;	packet	flooded	from	first	hop	(F:True)
• All	switches	learn	how	to	reach	A

• B	sends	to A	(L:True)
– Direct	path	following	table	entries	to	A	(F:False)

• Switches	along	path	learn	how	to	reach B
• Link	fails
• A sends	another	packet	to	B (L:True)

– Follows	along	path…	(F:False)
– ..	until	it	hits	failure	(L:False F:True)
– Switch	floods	packet	out	all ports	(even	backwards)

• Flooded	packet	reaches B (Successful	delivery!)
• Another	duplicate	of	flooded	packet	reaches	A’s	first	hop;	unlearn	B

• A	sends	another packet	to	B (L:True)
– Destination	B	unknown;	packet	flooded	from	first	hop	(F:True)

• All	switches	learn	how	to	reach	A	again

15

0.00% 0.02% 0.04% 0.06% 0.08% 0.10% 0.12% 0.14% 0.16% 0.18%

Campus Cluster

• How	much	flooding	do	failures	cause?

• How	big	does	the	deduplication filter	need	to	be?
– Less	than	1,000	entries	in	our	simulations

• Does	it	recover	from	overload?
– Yes

Really? Preliminaries

16

*

Really? Overview

• Thinking	back	to	that	matrix…
–We	want	plug	and	play
–We	to	support	shortest	paths	using	all	links
–We	don’t	want	to	have	a	control	plane
– Packet-timescale	recovery	from	failures

17

Really? Failure benchmark
• Omniscient,	randomized,	shortest-path	routing
• Failure	→	Adjustable	delay	→	Fix	routes

• Delay	of	zero	is	optimal	routing /	an	upper	bound
• Nonzero	delay	meant	to	roughly	simulate…
– OSPF,	IS-IS,	TRILL,	SPB,	etc.
– ..	without	needing	to	model	each	one	in	detail

• Random	shortest-cost	tree	rooted	at	each	destination
• Note:	we	don’t	compare	ourselves	to	STP	at	all

18

Really? Failure recovery - UDP
• Send	traffic	on	network	

with	high	failure	rate

• Metric	is	unnecessary	
delivery	failures –
packets	that	weren’t	
delivered	even	though	
optimal	routing	could	
have	delivered	them

• AXE	has	no unnecessary	
delivery	failures

19

0.00%

0.03%

0.05%

0.08%

0.13%

0.19%

0.27%

0.00% 0.05% 0.10% 0.15% 0.20% 0.25% 0.30%

AXE

5ms

10ms

20ms

40ms

80ms

160ms

0.000%

0.002%

0.003%

0.005%

0.008%

0.011%

0.021%

0.000% 0.005% 0.010% 0.015% 0.020% 0.025%

AXE

5ms

10ms

20ms

40ms

80ms

160ms

Delivery Failures (Campus)

Delivery Failures (Cluster)

• Similar	setup,	but	with	TCP

• Metric	is	number	of	flows	
with	significantly	worse	FCT	
than	optimal	routing

• AXE	has	no significantly	
worse	FCTs

Really? Failure recovery - TCP

20

0%

0%

0.01%

0.06%

0.14%

0.11%

0.25%

0.0% 0.1% 0.1% 0.2% 0.2% 0.3% 0.3%

AXE

5ms

10ms

20ms

40ms

80ms

160ms

0%

0.002%

0.007%

0.010%

0.015%

0.020%

0.036%

0.00% 0.01% 0.01% 0.02% 0.02% 0.03% 0.03% 0.04% 0.04%

AXE

5ms

10ms

20ms

40ms

80ms

160ms

Delayed FCTs (Campus)

Delayed FCTs (Cluster)

The End: Not Mentioned Here
• Multicast	AXE
– On	any	change	(failure;	join),	flood+dedup and	prune
– Flooded	packets	have	all	data	needed	to	build	tree

• AXE	with	Hedera
– Use	AXE	for	mice	&	recovery
– Centralized	SDN	routing	for	elephant	flows	

• P4	implementation
– AXE	is	expressible	in	P4
– Performance	on	real	hardware	is	open	question

21

22

THE END

