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The Talk

 What is AXE?
 Why look at this?
* How does it work?

* Really? This actually works?



The What

* An redesign of L2 to replace Ethernet and
Spanning Tree Protocol (and its variants)

* Targets are “normal” enterprise networks,
machine rooms, small private DCs

— Not the Googles, Microsofts, Rackspaces
— Not networks with incredibly highly utilization
— Not managed by a full-time team of experts



The What: Goals

* Plug-and-play

— If not, might as well just use L3

e Use all links for shortest paths
— Number one shortcoming of STP

* Fast recovery from failure

— Number two shortcoming of STP?
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The What: Assumptions

e Failure detection can be fast

— Not traditionally the bottleneck
* Control plane “hellos” were sufficient

— Need interrupt-driven LFS, BFD, etc.

* There’s a market for flood-and-learn L2
— Flooding/learn has security implications
— No heavy unidirectional traffic

* No multi-access links
— Everything is point-to-point




The Why: Is L2 still a problem?

e Still many largely-unmanaged, small/med L2 networks!
— Two in our building in Berkeley!

* There have been a few interesting developments...
— SPB, TRILL, SEATTLE, etc.

— Provide various tradeoffs

* AXE attempts to strike a different balance
— Focus on two key problems
— Keeping things as simple as possible (no control plane)



The Why: Context

Plug-and-play Shortest Paths Fast Recovery No Control Plane
STP
No STP (Tree)
TRILL/SPB
IP (L3)
Custom ?

AXE



The How: Extend Ethernet

e Basic flood/learn Ethernet
— When you see a packet: learn
— When you don’t know what to do: flood

* But AXE does not need a tree to deal with loops
— Means flooding works for handling failures too
* (because alternate paths are immediately available)

— Means that flood/learn finds short paths
e (because you haven’t removed links)



The How: Treeless flooding

* How do you get around the loop problem?
* Duplicate-packet-detection

* Multiple ways of doing it
* Our focus: hash-based deduplication filter

— In short: hash table where you replace upon collision
— Straightforward

— Amenable to hardware/P4 implementation
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The How: What changes?¢

* Learning is more subtle
— Source address seen on multiple ports

— Packets may even be going backwards!

* Responding to failures is more subtle

— Means we have to unlearn (outdated) state
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The How: Extend Header

* Extend the packet header between switches
— Nonce (per-switch sequence number)
» Used for packet deduplication
— Hop count

* Influences learning, also protects from loops

— Flooded flag: F
* Tracks whether a packet is being flooded

— Learnable flag: L

» Tracks whether packet can be learned from

12



The How: Separate queues

e Switches have flood queue and normal queue
— The Flooded flag in the header determines which
— Flood queue has higher priority and is shorter
— Normal queue sized... normally

* Intuition:
— Delivering floods quickly stops flooding quickly

— Deduplication only applies to floods, keeping
fewer floods in flight makes dedup easier
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The How: Overview

* Extend packet header

— Nonce, Hop Count, Flooded / Learnable flags
* Learning/Unlearning Phase

— May learn port and HC to src

— May unlearn path to dst if trouble was observed
* QOutput Phase

— |f packet is a duplicate: drop

— If unknown-dst/path-failed/already-flooding: flood
— Otherwise forward according to table
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The How: Example

* Asends a packet to B (L:True)

— Destination B unknown; packet flooded from first hop (F:True)
* All switches learn how to reach A

e BsendstoA (L:True)

— Direct path following table entries to A (F:False)
* Switches along path learn how to reach B

e Link fails

* A sends another packet to B (L:True)
— Follows along path... (F:False)
— ..until it hits failure (L:False F:True)

— Switch floods packet out all ports (even backwards)
* Flooded packet reaches B (Successful delivery!)
* Another duplicate of flooded packet reaches A’s first hop; unlearn B

* A sends another packet to B (L:True)

— Destination B unknown; packet flooded from first hop (F:True)
* All switches learn how to reach A again
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Really? Preliminaries

* How much flooding do failures cause?

B Campus u Cluster |

0.00% 0.02% 0.04% 0.06% 0.08% 0.10% 0.12% 0.14% 0.16% 0.18%

* How big does the deduplication filter need to be?
— Less than 1,000 entries in our simulations

e Does it recover from overload?
— Yes*
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Reallye Overview

* Thinking back to that matrix...
— We want plug and play
— We to support shortest paths using all links
— We don’t want to have a control plane
— Packet-timescale recovery from failures
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Reallye Failure benchmark

* Omniscient, randomized, shortest-path routing
* Failure - Adjustable delay - Fix routes

* Delay of zero is optimal routing / an upper bound

* Nonzero delay meant to roughly simulate...
— OSPF, IS-IS, TRILL, SPB, etc.

— .. without needing to model each one in detail

e Random shortest-cost tree rooted at each destination
* Note: we don’t compare ourselves to STP at all
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Reallye Failure recovery - UDP

 Send traffic on network
with high failure rate

* Metric is unnecessary
delivery failures —
packets that weren’t
delivered even though
optimal routing could
have delivered them

 AXE has no unnecessary
delivery failures
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Really¢ Failure recovery - TCP
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e Similar setup, but with TCP
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e Metric is number of flows
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The End: Not Mentioned Here

e Multicast AXE

— On any change (failure; join), flood+dedup and prune
— Flooded packets have all data needed to build tree

e AXE with Hedera

— Use AXE for mice & recovery
— Centralized SDN routing for elephant flows

* P4 implementation

— AXE is expressible in P4
— Performance on real hardware is open question
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THE END



