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Before there was NFV, there were middleboxes

   “A middlebox is defined as any intermediary device performing functions 
other than the normal, standard functions of an IP router on the datagram 
path between a source host and destination host.”

— B. Carpenter. RFC  3234. Middleboxes: Taxonomy and Issues. 



Example: Intrusion Prevention System

Detects anomalous or known-
dangerous traffic and blocks 
those connections.

For each connection: 
• Looks at port numbers, IP addresses and compares against blacklists. 
• Reconstructs connection by stream and scans for malicious terms. 
• Logs protocol, IP addresses, time of connection, etc.



Example: Web Proxy
Intercepts HTTP connections 
and caches frequently 
accessed content, may also 
blacklist certain content.

Maintains dual connections — one to client, one to server! 
• If client requests content in cache, serve locally rather than sending 

request to server. 
• If client requests blocked content, deny the request.



2010-2012: Middleboxes were problematic!

• Deployed in enterprises, ISPs and even data centers. Everyone used them. 

• But deploying them was a pain in the neck.

• Poor upgradeability: have to buy a new box every few years 

• Hard to install/configure 

• Fixed capacity — can’t “scale on demand” 

• Static routes/policies



Around 2012, the networking community 
looked to cloud computing to improve how 

we deployed middleboxes.



To understand how cloud computing helped 
middleboxes, let’s imagine cloud computing, 

deployed the way middleboxes were.



Imagine cloud computing if it were deployed like 
middleboxes.

So you want to deploy a web service.



So you want to deploy a web service.

Imagine cloud computing if it were deployed like 
middleboxes.



So you want to deploy a web service.

Imagine cloud computing if it were deployed like 
middleboxes.



So you want to deploy a web service.

Imagine cloud computing if it were deployed like 
middleboxes.



So you want to deploy a web service.

Imagine cloud computing if it were deployed like 
middleboxes.



This is ridiculous and not what anybody 
does for cloud services. But it’s what we 

were doing with middleboxes!



What we actually do in cloud computing.

General-purpose hardware.

Services run in software.

Installation is a “click” — no cabling required.

Can re-use infrastructure for different tasks.



2012: ETSI Network Functions Virtualization

Network traffic routed through 
general-purpose hardware.

“Network Functions”



Benefits of NFV
• Re-use hardware resources for many different applications 

• “Scale on demand” as load changes 

• Easier and more generic management tools 

• Fast to upgrade and change software deployments 

• Generic hardware usually -> cheaper, too!



Rough NFV System Architecture
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Rough NFV System Architecture

Software Switch



Multi-node NFV Architecture

Somehow we should stitch 
together multiple servers, too!



Today’s research: How do we 
actually build this?!
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ABSTRACT
Software-based sequential service chains in Network Function

Virtualization (NFV) could introduce signi�cant performance over-
head. Current acceleration e�orts for NFV mainly target on op-
timizing each component of the sequential service chain. How-
ever, based on the statistics from real world enterprise networks,
we observe that 53.8% network function (NF) pairs can work in
parallel. In particular, 41.5% NF pairs can be parallelized without
causing extra resource overhead. In this paper, we present NFP, a
high performance framework, that innovatively enables network
function parallelism to improve NFV performance. NFP consists
of three logical components. First, NFP provides a policy speci�-
cation scheme for operators to intuitively describe sequential or
parallel NF chaining intents. Second, NFP orchestrator intelligently
identi�es NF dependency and automatically compiles the policies
into high performance service graphs. Third, NFP infrastructure
performs light-weight packet copying, distributed parallel packet
delivery, and load-balanced merging of packet copies to support NF
parallelism. We implement an NFP prototype based on DPDK in
Linux containers. Our evaluation results show that NFP achieves
signi�cant latency reduction for real world service chains.
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(b) NFP framework supporting parallel NFs

Figure 1: Traditional sequential chain derived from [36] v.s.
NFP service graph with parallel NFs

1 INTRODUCTION
Network Functions Virtualization (NFV) addresses the problems

of traditional proprietary middleboxes [61] by leveraging virtu-
alization technologies to implement network functions (NFs) on
commodity hardware, in order to enable rapid creation, destruc-
tion, or migration of NFs [24]. In operator networks [52], data cen-
ters [32, 36], mobile networks [25] and enterprise networks [60],
network operators often require tra�c to pass through multiple
NFs in a particular sequence (e.g. �rewall+IDS+proxy) [7, 26, 50],
which is commonly referred to as service chaining. Meanwhile,
Software-de�ned Networking (SDN) is used to steer tra�c through
appropriate NFs to enforce chaining policies [2, 16, 23, 32, 50]. To-
gether, NFV and SDN can enable �exible and dynamic sequential
service chaining.

43

Monday, 2PM Session
“NFP: Enabling Network Function 
Parallelism in NFV”

• NFs are often designed to run in 
parallel: when packets are read in, 
they are processed by one of many 
cores.

• What if multiple cores could operate 
on one packet at the same time?



Monday, 2PM Session
“Dynamic Service Chaining with 
Dysco”

• Remember those arrows the packet 
followed?

• How should the software and 
hardware switches know where to 
“steer” the packets — which NFs 
should a given NF be processed by?
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ABSTRACT
Middleboxes are crucial for improving network security and per-
formance, but only if the right tra�c goes through the right mid-
dleboxes at the right time. Existing tra�c-steering techniques rely
on a central controller to install �ne-grained forwarding rules in
network elements—at the expense of a large number of rules, a cen-
tral point of failure, challenges in ensuring all packets of a session
traverse the same middleboxes, and di�culties with middleboxes
that modify the “�ve tuple.” We argue that a session-level protocol is
a fundamentally better approach to tra�c steering, while naturally
supporting host mobility and multihoming in an integrated fashion.
In addition, a session-level protocol can enable new capabilities like
dynamic service chaining, where the sequence of middleboxes can
change during the life of a session, e.g., to remove a load-balancer
that is no longer needed, replace a middlebox undergoing main-
tenance, or add a packet scrubber when tra�c looks suspicious.
Our Dysco protocol steers the packets of a TCP session through
a service chain, and can dynamically recon�gure the chain for
an ongoing session. Dysco requires no changes to end-host and
middlebox applications, host TCP stacks, or IP routing. Dysco’s
distributed recon�guration protocol handles the removal of proxies
that terminate TCP connections, middleboxes that change the size
of a byte stream, and concurrent requests to recon�gure di�erent
parts of a chain. Through formal veri�cation using Spin and ex-
periments with our Linux-based prototype, we show that Dysco is
provably correct, highly scalable, and able to recon�gure service
chains across a range of middleboxes.

CCS CONCEPTS
• Networks → Network protocols; Middle boxes / network
appliances; Session protocols; Network components;
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Session Protocol; NFV; Veri�cation; Spin.
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1 INTRODUCTION
In the early days of the Internet, end-hosts were stationary devices,
each with a single network interface, communicating directly with
other such devices. Now most end-hosts are mobile, many are
multihomed, and tra�c traverses chains of middleboxes such as
�rewalls, network address translators, and load balancers. In this
paper, we argue that the “new normal” of middleboxes warrants a
re-examination of approaches, as has happened with mobility [49].

Most existing research proposals for middlebox insertion or
“service chaining” use a logically centralized controller to install
�ne-grained forwarding rules in network elements, to steer tra�c
through the right sequence of middleboxes [1, 9, 10, 18, 19, 36, 37,
50]. The many weaknesses of these solutions are a direct result of
their reliance on forwarding rules for tra�c steering:
• They rely on real-time response from the central controller to
handle frequent events, including link failures, tra�c �uctua-
tions, and the addition of new middlebox instances.
• They need network state that grows with the number of policies,
the di�culty of classifying tra�c, the length of service chains,
and the number of instances per middlebox type.
• Updates to rules due to changes in policy, topology, or load may
change the paths of ongoing sessions, yet all packets of a session
must traverse the same middleboxes (“session a�nity”).
• Fine-grained routing is inherently intra-domain. It is di�cult
to outsource middleboxes to the cloud [40] or other third-party
providers [45], since the controller cannot control the entire path.
• Some middleboxes modify the “�ve-tuple” of packets in unpre-
dictable ways, so that forwarding rules matching packets going
into the middlebox might not match them on the way out.
• Some middleboxes classify packets to choose which middlebox
should come next. These middleboxes should be able to select
the service chain for their outgoing packets, which forwarding
by network elements does not allow them to do.
• Adding middleboxes to a secure session (e.g., TLS) is challeng-
ing without cooperation with the end-hosts to exchange the
information needed to decrypt and reencrypt the data [25].
• A multihomed host spreads tra�c over multiple administrative
domains (e.g., enterprise WiFi and commercial cellular network),
yet some middleboxes need to see all the data in a TCP session
(e.g., for parental controls [38]). In the administrative domain
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Monday, 2PM Session
“NFVNice: Dynamic Backpressure 
and Scheduling for NFV Service 
Chains”

• How should we schedule which NFs 
run and when?

• One key challenge: avoid wasting 
work!

NFVnice: Dynamic Backpressure and Scheduling
for NFV Service Chains
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Timothy Wood‡, Mayutan Arumaithurai⇤ and Xiaoming Fu⇤

⇤University of Göttingen, Germany, ‡George Washington University,
§IBM T J Watson Research Center, †University of California, Riverside.

ABSTRACT
Managing Network Function (NF) service chains requires careful
system resource management. We propose NFVnice, a user space
NF scheduling and service chain management framework to pro-
vide fair, e�cient and dynamic resource scheduling capabilities on
Network Function Virtualization (NFV) platforms. The NFVnice
framework monitors load on a service chain at high frequency
(1000Hz) and employs backpressure to shed load early in the ser-
vice chain, thereby preventing wasted work. Borrowing concepts
such as rate proportional scheduling from hardware packet sched-
ulers, CPU shares are computed by accounting for heterogeneous
packet processing costs of NFs, I/O, and tra�c arrival character-
istics. By leveraging cgroups, a user space process scheduling ab-
straction exposed by the operating system, NFVnice is capable of
controlling when network functions should be scheduled. NFVnice
improves NF performance by complementing the capabilities of the
OS scheduler but without requiring changes to the OS’s schedul-
ing mechanisms. Our controlled experiments show that NFVnice
provides the appropriate rate-cost proportional fair share of CPU
to NFs and signi�cantly improves NF performance (throughput
and loss) by reducing wasted work across an NF chain, compared
to using the default OS scheduler. NFVnice achieves this even for
heterogeneous NFs with vastly di�erent computational costs and
for heterogeneous workloads.
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1 INTRODUCTION
Network Function Virtualization (NFV) seeks to implement network
functions and middlebox services such as �rewalls, NAT, proxies,
deep packet inspection, WAN optimization, etc., in software in-
stead of purpose-built hardware appliances. These software based
network functions can be run on top of commercial-o�-the-shelf
(COTS) hardware, with virtualized network functions (NFs). Net-
work functions, however, often are chained together [20], where a
packet is processed by a sequence of NFs before being forwarded
to the destination.

The advent of container technologies like Docker [34] enables
network operators to densely pack a single NFV appliance (VM/bare
metal) with large numbers of network functions at runtime. Even
though NFV platforms are typically capable of processing packets
at line rate, without e�cient management of system resources in
such densely packed environments, service chains can result in
serious performance degradation because bottleneck NFs may
drop packets that have already been processed by upstream NFs,
resulting in wasted work in the service chain.

NF processing has to address a combination of requirements.
Just as hardware switches and routers provide rate-proportional
scheduling for packet �ows, an NFV platform has to provide a fair
processing of packet �ows. Secondly, the tasks running on the NFV
platform may have heterogeneous processing requirements that OS
schedulers (unlike hardware switches) address using their typical
fair scheduling mechanisms. OS schedulers, however, do not treat
packet �ows fairly in proportion to their arrival rate. Thus, NF pro-
cessing requires a re-thinking of the system resource management
framework to address both these requirements. Moreover, standard
OS schedulers: a) do not have the right metrics and primitives to
ensure fairness between NFs that deal with the same or di�erent
packet �ows; and b) do not make scheduling decisions that account
for chain level information. If the scheduler allocates more process-
ing to an upstream NF and the downstream NF becomes overloaded,
packets are dropped by the downstream NF. This results in ine�-
cient processing and wasting the work done by the upstream NF.
OS schedulers also need to be adapted to work with user space
data plane frameworks such as Intel’s DPDK [1]. They have to be
cognizant of NUMA (Non-uniform Memory Access) concerns of
NF processingand the dependencies among NFs in a service chain.
Determining how to dynamically schedule NFs is key to achieving
high performance and scalability for diverse service chains, espe-
cially in a scenario where multiple NFs are contending for a CPU
core1

1While CPU core counts are increasing in modern hardware, they are likely to
remain a bottleneck resource, especially when service chains are densely packed into
a single machine (as is often the case with several proposed approaches [23, 52]).
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Thursday, 8:30AM Session

“A High Performance Packet Core 
for Cellular Networks”

• Focuses on a particular class of NFs 
used in ISPs: “Evolved Packet Core” 
devices.

• Shows how to re-architect them to 
be more efficient and faster by 
taking advantage of software!
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Next Generation Cellular Networks
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ABSTRACT
Cellular tra�c continues to grow rapidly making the scalability of
the cellular infrastructure a critical issue. However, there is mount-
ing evidence that the current Evolved Packet Core (EPC) is ill-suited
to meet these scaling demands: EPC solutions based on specialized
appliances are expensive to scale and recent software EPCs perform
poorly, particularly with increasing numbers of devices or signaling
tra�c.

In this paper, we design and evaluate a new system architecture
for a software EPC that achieves high and scalable performance.
We postulate that the poor scaling of existing EPC systems stems
from the manner in which the system is decomposed which leads
to device state being duplicated across multiple components which
in turn results in frequent interactions between the di�erent com-
ponents. We propose an alternate approach in which state for a
single device is consolidated in one location and EPC functions are
(re)organized for e�cient access to this consolidated state. In e�ect,
our design “slices” the EPC by user.

We prototype and evaluate PEPC, a software EPC that imple-
ments the key components of our design. We show that PEPC
achieves 3-7⇥ higher throughput than comparable software EPCs
that have been implemented in industry and over 10⇥ higher through-
put than a popular open-source implementation (OpenAirInterface).
Compared to the industrial EPC implementations, PEPC sustains
high data throughput for 10-100⇥ more users devices per core, and
a 10⇥ higher ratio of signaling-to-data tra�c. In addition to high
performance, PEPC’s by-user organization enables e�cient state
migration and customization of processing pipelines. We imple-
ment user migration in PEPC and show that state can be migrated
with little disruption, e.g., migration adds only up to 4µs of latency
to median per packet latencies.
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1 INTRODUCTION
Cellular networks are experiencing explosive growth along multi-
ple dimensions: (i) tra�c volumes (e.g., mobile tra�c grew by 74%
in 2015), (ii) the number and diversity of connected devices (e.g.,
projections show that by 2020 there will be 11.6 billion mobile con-
nected devices including approximately 3 billion IoT devices [11]),
and (iii) signaling tra�c (e.g., signaling tra�c in the cellular net-
work is reported to be growing 50% faster than data tra�c [31]).

These trends impose signi�cant scaling challenges on the cellular
infrastructure. In particular, there is growing concern regarding
the scalability of the cellular evolved packet core (EPC) [21] infras-
tructure. The EPC is the portion of the network that connects the
base stations to the IP backbone and implements cellular-speci�c
processing on user’s data and signaling tra�c. Recent industrial and
academic studies have provided mounting anecdotal and empirical
evidence showing that existing EPC implementations cannot keep
up with the projected growth in cellular tra�c [10, 18, 19, 23, 37].

We postulate that the poor scaling of existing solutions stems
from the manner in which existing EPC systems have been decom-
posed. More speci�cally, EPC systems today are factored based on
tra�c type, with di�erent components to handle signaling and data
tra�c: the Mobility Management Entity (MME) handles signaling
tra�c from mobile devices and base stations, while the Serving and
Packet Gateways (S-GW and P-GW) handle data tra�c. The prob-
lem with this factoring is it complicates how state is decomposed
and managed. As we elaborate on in §2, current designs lead to
three problems related to state management:

(1) Duplicated state leads to frequent synchronization across com-
ponents. In current EPCs, per-user state is often duplicated between
components. For example, a user request to establish a cellular con-
nection is processed by the MME which instantiates user state and
then communicates this addition to the S-GW which in turn lo-
cally instantiates similar per-user state. A similar interaction takes
place when user state is updated after mobility events. This du-
plication introduces complexity (e.g., implementing the protocols
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Thanks!

Isn’t this a cute dog?


