Disk|Crypt|Net
High-performance video streaming

llias Marinos, Robert Watson (Cambridge),
Mark Handley (UCL),
Randall Stewart (Netflix)

Modern Video Streaming

Just lots of HTTP requests for video chunks.
Client picks chunks to adapt rate.

Server is pretty dumb — just has to go fast.
HTTP/1.1 persistent connections.

TLS becoming important (95% of Youtube traffic).

More than 50% of US Internet traffic.

Important to make good use of expensive
hardware. How fast can you go?

About this Blog

Previous Home Next

BBC Digital Media Distribution: How we
improved throughput by 4x

Thursday 17 December 2015, 10:09

Alistair Wooldrige
Senior Software Engineer

. Staff from the BBC's online and technology
Tagged with: Media Distribution teams talk about BBC Online, BBC iPlayer,
BBC Red Button and the BBC's digital
E COMMENTS services. The blog is reactively moderated.
Your host is Robert Sheehy.

- P . .) . Follow Internet Blog on Twitter
BBC Digital Media Distribution has been working to deliver more throughput from their caching

infrastructure. Senior Software Engineer Alistair Wooldrige explains how the team diagnosed poor

Blog home
performance with existing software and why replacing it achieved a 4x increase in performance. =

Explore all BBC blogs

Within the BBC Digital Media Distribution team, we used Varnish cache for the first version of our

Radix caching servers. A Radix server caches HTTP responses from origin servers - usually video

and audio content for iPlayer, delivered using one of the HTTP Adaptive bitrate streaming Blog Updates
formats such as MPEG-DASH, HLS or HDS. For more information on Radix and our overall

caching strategy, see Digital Distribution: How on demand content reaches audiences. .
ng o ‘9! istributt W ul Stay updated with the latest posts from the

New iPlayer setup, Dec 2015:

* nginx on Linux, 24 cores on two Intel Xeon E5-2680v3
processors, 512 GB DDR4 RAM, 8.6TB RAID array of SSDs.

* 20Gb/s per server. &Can we improve performance?

Case study: Netflix

 FreeBSD, but tweaked.
— Asynchronous sendfile ()

* Non-blocking zero copy from disk buffer cache to Net.
— VM scaling

 Fake NUMA domains to avoid lock contention.
* Proactive cleanup of disk buffer cache.

— RSS-assisted LRO.

* Sort incoming packets to buckets based on 5-tuple hash
to optimize LRO engine efficacy.

Lets Do Some Experiments

e 8-core Haswell server, 2x40GbE NICs, 128GB
RAM, 4x Intel P3700 NVMe disks

e Linux Clients.

* Synthetic workload, middlebox for realistic
RTT.

FF middlebox [
| Streamer

middlebox

Network Throughput (Gb/s)

Unencrypted video streaming workload

80 »
R _H.: -
A
60 + /
/' ~2X
,l
40 77 = %

CPU utilization doubles

when fetching from disk
(~350% -> ~700%)

T —oT

Data comes from
disk buffer cache

Data NOT in disk
buffer cache | Neiix 100%BC

—[J— Netflix 0%BC

— = = Stock 100% BC
—ajo— Stock 0%BC

0 Conclusions 16000

* Netflix improvements good s
e CPU utilization is a problem

Encryption

Problem:
Sendfile:
e Zero copy from disk buffer cache.
TLS:
 Different encrypted stream per user.
e Kernel is unaware of TLS.
Sendfile and TLS are fundamentally incompatible!

* Conventional TLS stack gave Netflix 20 -> 8.5Gb/s

sendfile () NOT zerocopy anymore!

Encrypted video streaming workload

CPU is saturated. Performance loss (~30%)
Memory read throughput 4 when content fetched
~3x more than network F_'Ii from SSDs

throughput! \'f‘, 4 - -~ -U---g-_ -]

= T
= / & g 1 1 1l
2 R I T e ",
8 40 B y; -
= +— 3 —F—F+—%F —=
w20
o - O0- Netflix 100%BC — =% - Stock 100% BC
% —1— Netflix 0%BC —age— Stock 0%BC
Z | |

2000 4000 6000 8000 10000 12000 14000 16000
Concurrent HTTP persistent connections

What’s happening?

NVMe
@?‘
CPU e 2 DRAM
.Buffer Cache
_________________ -1
Copy <277 - -Copied data
_____________ -7
AES S . - E t dd t
TCP oy 5 s B

\

The stack is too asynchronous.
Data keeps getting flushed from the LLC, and re-loaded.
System is bottlenecked on memory.

Production Netflix Workload

* 192GB for buffer cache, but only 10% hit ratio.
e Streamers bottlenecked in memory bandwidth.

v’ Modern NVMe SSDs have low latency & high
throughput.

v’ Modern Intel CPUs DMA directly to L3 cache.

/

ldeal Stack

To achieve this, we must:

 Fetch on demand from the SSD when TCP needs data.

 Assoon as the SSD returns data, process it to
completion and DMA it to the NIC.

Solution Outline

1. ATCP ACK arrives, freeing up congestion
window.

2. Trigger stack to request more data from SSDs to
fill that congestion window.

Conventional OS stack NOT suitable:

» Highly asynchronous; storage and network stack are
loosely coupled -- relies on VFS & Buffer Cache.

» Introduces overheads related to abstraction layers
(VFS, POSIX etc), redundant memory copies and
domain transitions (user<->kernel).

The Atlas Streaming Stack

Atlas: a complete user-space stack

» TCP/IP stack based on modified version of
Sandstorm (SIGCOMM’14) and netmap
(ATC’12).

» Storage handled using diskmap (no buffer
cache, no sophisticated FS).

» Lockless, full zero-copy stack from disk<->NIC.

» Tight pipeline to reduce asynchrony, and
ideally save memory bandwidth (w/ DDIO).

Diskmap Architecture

Diskmap: a kernel-bypass 1/0 framework for
NVMe disks

(e
§ memory
= mapped
o ‘ """ IEyay— |
s @) [&DE ||| @
g:) / @meo-l/\ buffers/ Q/meo-z/\ bufferS/

admin
gpairs

€«

A

A 4

1/0 MMU
[PCle NVMe Disk |

user

kernel

The Atlas Execution Pipeline

libnmio libnvme

[NIC || NvMeDisk |

Atlas vs. Netflix, Unencrypted Content

15% better
throughput than
Netflix when cache
hit ratio is low.

Netflix needs 8
cores, Atlas only
needs 4

Almost no CPU
stalls: data in LLC
when we want it.

80 »

)

S~

o)

U
T

4

>

o

<

=

e - O- Netflix 0% BC

ﬁ 20 - [O- Netflix 100% BC

—_— Atlas
! N o o

—_ A ‘O— - - -- - - -

N -- O

8 8 Q— - -0

< L7

Q 6 // O 0 .

3 o) __o---0---0---

/ - -~

g // - I

o — 4 -

£ p H ~ O- Netflix 0%BC

Y O,- .

= 2 O - [OJ- Netflix 100%BC

—— Atlas

e bestestaste Suskentantestes % ----;;) e | . — -

2000 4000 6000 8000 10000 12000 14000 16000
Concurrent HTTP persistent connections

Atlas vs. Netflix, Encrypted Content

80 &

When cache hit =

_— O

ratio is low, 50% =

>

more throughput -g
using half the 3 T O Netfix 0% BC
cores. |£ 20 - - Netflix 100% BC

—— Atlas

w2

N
@

-
-
-_—

Almost half the
memory reads for
each packet sent.

-
-
-

)

2000 4000 6000 8000 10000 12000 14000 16000
Concurrent HTTP persistent connections

Memory reid\(throughput
. L
+
¥
i
%
%

Atlas memory usage

When LLC/CPU is When LLC/CPU is
NOT saturated: saturated:
NVMe VMe
@V‘ 0@V
cPU LC O DRAM CPU LIC DRAM
R re-use buffer
AES. ..M. ... Tecuse buffer I — —
TCP\—:::-:—:—:-:-:-:-:: » TCP Packets TCPG:::::-:-:_:T: » TCP Packets:
19)
&L &
NIC NIC

Netmap doesn’t provide a low-delay fine-grained way to
communicate DMA completions.

Can’t reuse buffers fast enough (no LIFO stack), and this
contributes to some extra cache pressure.

Summary

* Netflix addressed all the low-hanging fruit
— Very fast, but now bottlenecked on memory

e Atlas is a specialized stack
— Puts SSD directly in TCP control loop

— Immediately processes disk reads to completion and
transmits.

— 50% throughput improvement with encrypted content,
close to 50% reduction in memory reads

* Netflix inspired by Atlas

— Now experimenting with how to directly trigger encryption
off of disk DMA completions in their FreeBSD stack.

