
Disk|Crypt|Net
High-performance	video	streaming

Ilias Marinos,	Robert	Watson	(Cambridge),
Mark	Handley	(UCL),

Randall	Stewart	(Netflix)

Modern	Video	Streaming

• Just	lots	of	HTTP	requests	for	video	chunks.
• Client	picks	chunks	to	adapt	rate.
• Server	is	pretty	dumb	– just	has	to	go	fast.
• HTTP/1.1	persistent	connections.
• TLS	becoming	important	(95%	of	Youtube traffic).

• More	than	50%	of	US	Internet	traffic.
• Important	to	make	good	use	of	expensive	
hardware.	How	fast	can	you	go?

New	iPlayer setup,	Dec	2015:
• nginx on	Linux,	24	cores	on	two	Intel	Xeon	E5-2680v3	

processors,	512	GB	DDR4	RAM,	8.6TB	RAID	array	of	SSDs.	
• 20Gb/s	per	server. ßCan	we	improve	performance?

Case	study:	Netflix

• FreeBSD,	but	tweaked.
– Asynchronous	sendfile()
• Non-blocking	zero	copy	from	disk	buffer	cache	to	Net.

– VM	scaling
• Fake	NUMA	domains	to	avoid	lock	contention.
• Proactive	cleanup	of	disk	buffer	cache.

– RSS-assisted	LRO.
• Sort	incoming	packets	to	buckets	based	on	5-tuple	hash	
to	optimize	LRO	engine	efficacy.

Lets	Do	Some	Experiments
• 8-core	Haswell	server,	2x40GbE	NICs,	128GB	
RAM,	4x	Intel	P3700	NVMe disks

• Linux	Clients.
• Synthetic	workload,	middlebox for	realistic	
RTT.

Streamer

middlebox

40GbE	switch

C C

ms

Client

middlebox

Streamer

μs

Unencrypted	video	streaming	workload

Data	NOT	in	disk	
buffer	cache

Conclusions
• Netflix	improvements	good
• CPU	utilization	is	a	problem

~2x Data	comes	from	
disk	buffer	cache

CPU	utilization	doubles	
when	fetching	from	disk	

(~350%	->	~700%)

Encryption
Problem:

Sendfile:
• Zero	copy	from	disk	buffer	cache.

TLS:
• Different encrypted	stream	per	user.
• Kernel is	unaware	of	TLS.

Sendfile and	TLS	are	fundamentally	incompatible!

• Conventional	TLS	stack	gave	Netflix 20	-> 8.5Gb/s
• Netflix	implemented	in-kernel	TLS	support	for	sendfile!.

sendfile()NOT zerocopy anymore!

Encrypted	video	streaming	workload

Performance	loss	(~30%)	
when	content	fetched	

from	SSDs

CPU	is	saturated.
Memory	read	throughput	
~3x	more	than	network	

throughput!

What’s	happening?

NVMe
DRAMLLC

NIC

Buffer	Cache

Copied	data

Encrypted	data

Copy

TCP

CPU
1

2

3

AES

The	stack	is	too	asynchronous.		
Data	keeps	getting	flushed	from	the	LLC,	and	re-loaded.		
System	is	bottlenecked	on	memory.

Production	Netflix	Workload

• 192GB	for	buffer	cache,	but	only	10%	hit	ratio.
• Streamers	bottlenecked	in	memory	bandwidth.

üModern	NVMe SSDs	have	low	latency &	high	
throughput.

üModern	Intel	CPUs	DMA	directly	to	L3	cache.

Can	we	eliminate	the	disk	buffer	cache	
completely,	and	fetch	everything	from	the	SSDs	

on-demand?

Ideal	Stack

NVMe

DRAMLLC

NIC

AES

TCP

CPU

re-use
buffer

To	achieve	this,	we	must:
• Fetch	on	demand	from	the	SSD	when	TCP	needs	data.
• As	soon	as	the	SSD	returns	data,	process	it	to	

completion	and	DMA	it	to	the	NIC.

Solution	Outline
1. A	TCP	ACK	arrives,	freeing	up	congestion	

window.
2. Trigger	stack	to	request	more	data	from	SSDs	to	

fill	that	congestion	window.
3. SSDs	return	data placing	them	in	the	LLC.
4. Read	completion	event	causes	application	to	

encrypt	the	data	in-place,	add	TCP	headers,	and	
trigger	the	transmission	of	the	packets.

5. Network	completion	event	frees	the	buffer,	
allowing	it	to	be	reused	for	a	later	disk	read.	

Conventional	OS	stack	NOT	suitable:
Ø Highly	asynchronous;	storage	and	network	stack	are	

loosely	coupled	-- relies	on	VFS	&	Buffer	Cache.
Ø Introduces	overheads	related	to	abstraction	layers	

(VFS,	POSIX	etc),	redundant	memory	copies	and	
domain	transitions	(user<->kernel).

The	Atlas	Streaming	Stack

Atlas:	a	complete	user-space	stack
Ø TCP/IP	stack	based	on	modified	version	of	
Sandstorm	(SIGCOMM’14) and	netmap
(ATC’12).

Ø Storage	handled	using	diskmap (no	buffer	
cache,	no	sophisticated	FS).

Ø Lockless,	full	zero-copy stack	from	disk<->NIC.
Ø Tight	pipeline	to	reduce	asynchrony,	and	
ideally	save	memory	bandwidth	(w/	DDIO).

Diskmap Architecture

SQ CQ

PCIe NVMe Disk

ke
rn
el

us
er

DM
A

SQ CQ

nvme0-1

libnvme
app

SQ CQ

nvme0-2

libnvme
app

DM
A

DM
A

admin
qpairs

C0 C1

I/O	MMU

Diskmap:	a	kernel-bypass	I/O	framework	for	
NVMe disks

memory
mapped

buffers buffers

The	Atlas	Execution	Pipeline

SQ CQ

NVMe DiskNIC

RX TX

ke
rn
el

us
er

webserver

TCP/IP

libnmio libnvme

1

2

4buffers 5

637

Atlas	vs.	Netflix,	Unencrypted	Content

Th
ro
ug
hp

ut
	(G

b/
s)

LL
C	
m
iss
es
/s
	(x
10

7)
	Netflix	needs	8	

cores,	Atlas	only	
needs	4

15%	better	
throughput	than	
Netflix	when	cache	
hit	ratio	is	low.

Almost	no	CPU	
stalls:	data	in	LLC	
when	we	want	it.

Atlas	vs.	Netflix,	Encrypted	Content

Th
ro
ug
hp

ut
	(G

b/
s)

M
em

or
y	
re
ad
/t
hr
ou

gh
pu

t

When	cache	hit	
ratio	is	low,	50%	
more	throughput	
using	half	the	
cores.

Almost	half	the	
memory	reads	for	
each	packet	sent.

Atlas	memory	usage

When	LLC/CPU	is	
NOT	saturated:

When	LLC/CPU	is
saturated:

DRAMLLC

NIC

AES

TCP

CPU

TCP	Packets

re-use	buffer

NVMe

DRAMLLC

NIC

AES

TCP

CPU

TCP	Packets

re-use	buffer

NVMe

Netmap doesn’t	provide	a	low-delay	fine-grained	way	to	
communicate	DMA	completions.		
Can’t	reuse	buffers	fast	enough	(no	LIFO	stack),	and	this	
contributes	to	some	extra	cache	pressure.

Summary
• Netflix	addressed	all	the	low-hanging	fruit
– Very	fast,	but	now	bottlenecked	on	memory

• Atlas	is	a	specialized	stack
– Puts	SSD	directly	in	TCP	control	loop
– Immediately	processes	disk	reads	to	completion	and	
transmits.

– 50%	throughput	improvement	with	encrypted	content,	
close	to	50%	reduction	in	memory	reads

• Netflix	inspired	by	Atlas
– Now	experimenting	with	how	to	directly	trigger	encryption	
off	of	disk	DMA	completions	in	their	FreeBSD	stack.

