Carousel: Scalable Traffic Shaping at End Hosts

Ahmed Saeed, Nandita Dukkipati, Vytautas Valancius, Vinh The Lam, Carlo Contavalli, and Amin Vahdat
Rate limiting and isolation between thousands of flows per machine [BwE - SIGCOMM '15]
New protocols that require per-flow pacing
[TCP BBR and TIMELY - SIGCOMM ‘15]

Rate limiting and isolation between thousands of flows per machine
[BwE - SIGCOMM ’15]
Traffic Shaping

Packet sources

Classifier

Rate1
Rate2
Rate3

Scheduler

To NIC

Shaper
Traffic Shaping

Packet sources

Classifier

Rate1
Rate2
Rate3

Scheduler

Shaper

To NIC
Traffic Shaping

Packet sources

Classifier

Rate1
Rate2
Rate3

Scheduler

Shaper

To NIC
Traffic Shaping

Packet sources

Classifier

Rate1
Rate2
Rate3

Scheduler

To NIC

Shaper

Overhead of managing a queue per configured rate
Traffic Shaping

Overhead of managing a queue per configured rate
Traffic Shaping

Packet sources

Overhead of managing a queue per configured rate
Traffic Shaping

Packet sources

Overhead of managing a queue per configured rate
We need new traffic shapers that can handle tens of thousands of flows and rates
Main Idea
Replace the many queues with a single low-overhead queue
Contributions
Contributions

Synchronization

Single, O(1), Queue

To NIC

Shaper

Timing Wheel

Timestamper

Contributions to NIC Shaper Synchronization Timing Wheel Timestamper Single, O(1), Queue
Contributions

To NIC

Shaper

Timing Wheel

Single, O(1), Queue

To NIC
Contributions

One Shaper per Core

Single, O(1), Queue
Contributions

Apply backpressure

Shaper

Timing Wheel

To NIC

One Shaper per Core

Single, O(1), Queue
Outline

● Problems with Current Shapers
● Carousel Overview
● Single Queue Shaping
● Backpressure
● Evaluation
Problems with Current Shapers
FQ/Pacing

- Implements per TCP flow pacing
- Requires a queue per flow
 - Flows are kept in order of their scheduled transmission time
 - Flows are dequeued in order
- \(O(\log n) \) operations per packet to operate on a sorted list of flows
CPU utilization for FQ/pacing and a NOOP Qdisc for the same load
FQ/Pacing introduces 10% more CPU overhead
Carousel Overview
Carousel Overview

- Relies on a single queue for all packets from all flows
- Requires a high frequency timer or busy polling
- Pinned to a single core
Single Queue Shaping
Single Queue Shaping

- All packets are sorted by their transmission time in one data structure.
- A single queue for all traffic will need to handle tens of thousands of packets.
- **Challenge:**
 Enqueue and dequeue in a data structure of sorted elements at line rate.
Single Queue Shaping

- All packets are sorted by their transmission time in one data structure.
- A single queue for all traffic will need to handle tens of thousands of packets.
- **Challenge:**
 Enqueue and dequeue in a data structure of sorted elements at line rate.
Timing Wheel [Varghese et al. SOSP ’87]

- Bucket sort approach to Calendar Queue covering a time horizon
 - Relies on having a minimum rates
- Implemented as an array of buckets each a linked list of packets
 - Each bucket represents a certain time range
Timing Wheel Benchmark

- Measured overhead per enqueue/dequeue pairs
- Overhead per element is between 21-22 nanoseconds
 - Fixed for 2000 to 2 million sorted elements
 - 21 nanoseconds per packet = 500 Gbps (for 1500 byte packets)
Timestampers

- Packets are timestamped by policy enforcers in their transmission path
 - TCP timestamps a packet based on its pacing rate
 - Bandwidth enforcer timestamps a packet based on its policy-based aggregate rate
- Carousel picks the largest timestamp
- \(\text{NextTimestamp} = \text{LastTimestamp} + \frac{\text{SizeOfPacket}}{\text{ConfiguredRate}} \)
Example of Shaping using Carousel

Each bucket represents 1 second
Example of Shaping using Carousel

A time step 0

Each bucket represents 1 second
Example of Shaping using Carousel

A time step 0
Example of Shaping using Carousel

A time step 0

Each bucket represents 1 second
Example of Shaping using Carousel

Each bucket represents 1 second

A time step 0
Example of Shaping using Carousel

A time step 0

Timing Wheel

Each bucket represents 1 second

Rate (1 pps)

Rate (0.5 pps)

T=4
Example of Shaping using Carousel

A time step 0

Each bucket represents 1 second
Example of Shaping using Carousel

A time step 1

Each bucket represents 1 second
Example of Shaping using Carousel

A time step 2

Each bucket represents 1 second
Example of Shaping using Carousel

Rate (1 pps)

Rate (0.5 pps)

Each bucket represents 1 second
Backpressure with Deferred Completion
The Value of Backpressure

- Without backpressure shaper queues get full with small number of flows causing
The Value of Backpressure

- Without backpressure shaper queues get full with small number of flows causing
 - Unnecessary drops (when the queue is full the queue tail drops)
The Value of Backpressure

- Without backpressure shaper queues get full with small number of flows causing
 - Unnecessary drops (when the queue is full the queue tail drops)
 - Head of Line Blocking
The Value of Backpressure

- Without backpressure shaper queues get full with small number of flows causing
 - Unnecessary drops (when the queue is full the queue tail drops)
 - Head of Line Blocking
- Backpressure allows shapers to control sender rate and avoid overwhelming the shaper
The Completion Signal

- Completions are signals from the NIC to the network stack to inform it that a packet has been transmitted.
The Completion Signal

- Completions are signals from the NIC to the network stack to inform it that a packet has been transmitted.
The Completion Signal

- Completions are signals from the NIC to the network stack to inform it that a packet has been transmitted
The Completion Signal

- Completions are signals from the NIC to the network stack to inform it that a packet has been transmitted
 - Completions are typically delivered in order
The Completion Signal

- Completions are signals from the NIC to the network stack to inform it that a packet has been transmitted
 - Completions are typically delivered in order
 - Completion should be controlled by the hypervisor not the virtual NIC
The Completion Signal

- Completions are signals from the NIC to the network stack to inform it that a packet has been transmitted
 - Completions are typically delivered in order
 - Completion should be controlled by the hypervisor not the virtual NIC
- Completions should be delivered out of order and completely controlled by Shapers
Backpressure with Deferred Completion

Without Backpressure

Transport Stack → enqueue → Shaper → dequeue → Network

packet

Completion signal
Backpressure with Deferred Completion

Without Backpressure

With Backpressure

Transport Stack

enqueue

Shaper

Queues

dehqueue

Network

packet

Completion signal

Transport Stack

enqueue

Shaper

Timing Wheel

dehqueue

Network

packet

Deferred Completion signal
Backpressure with Deferred Completion

Diagram showing the flow of packets through a transport stack,enqueueing process, timing wheel, dequeuing process, and finally the network. A graph is also shown comparing the number of packets in the shaper with and without deferred completion (DC).
Backpressure with Deferred Completion

![Diagram](image)

- Transport Stack
 - enqueued packet
 - Timing Wheel (Deferred Completion signal)
 - dequeued packet
 - Network

Graph:

- **DC**
- **No DC**

Y-axis:
- Number of Packets in Shaper
 - From 0 to 80,000

X-axis:
- Number of Flows
 - From 0 to 10,000

- Queue saturated
Backpressure with Deferred Completion

Deferred completions limits the number of packets in shaper reducing its memory footprint
Evaluation
Evaluation Setup

- Carousel deployed within a Software NIC
Evaluation Setup

- Carousel deployed within a Software NIC
- Evaluation on Youtube servers comparing Carousel and FQ/Pacing
Evaluation Setup

- Carousel deployed within a Software NIC
- Evaluation on Youtube servers comparing Carousel and FQ/Pacing
- Each server handles up to 50k sessions concurrently
Evaluation Metric

- Measures Gbps served per CPU utilization
 - Metric used is Gbps/CPU (higher is better)
 - Compare machines with similar CPU utilization
 - Measurements performed during peak 12-hours per day

- Evaluation is performed for:
 - Overall CPU utilization
 - Software NIC utilization
Overall CPU Utilization

- 8.2% improvement
- 6.4% improvement
Overall CPU Utilization

Carousel saves up to 8.2% of overall CPU utilization (5.9 cores on a 72 core machine)
SoftNIC Utilization
Carousel improves even Software NIC utilization by 12% by increasing size of batches of packets enqueue in the Software NIC.
Evaluation Summary

Performance improvement when Carousel starts on 5 different machines
Conclusion

- Carousel allows networks operators for the first time to shape tens of thousands of flows individually.
- Carousel advantages make a strong case for providing single-queue shaping and backpressure in kernel, userspace stacks, hypervisors, and hardware.
Questions?