How Flexible is Your Network?
A Proposal to Quantify Flexibility in Softwarized Networks

Wolfgang Kellerer
Technical University of Munich, Germany

with Peter Babarzci, Andreas Blenk, Mu He, Patrick Kalmbach, Markus Klügel,
Alberto Martinez Alba, Johannes Zerwas

ERC Networking Symposium @ ACM SIGCOMM 2018
Budapest, Hungary, August 24, 2018

www.networkflexibility.org
The rise of flexibility

- Flexibility is gaining increasing **attention** and **importance**

Evolution of the number of publications containing the words *"flexible"* or *"flexibility"* in contrast with those containing *"bandwidth"* or *"capacity"* in four major IEEE journals and magazines on communication, with respect to the number of publications in 1995.
Why?

- Evolution tells us that the more flexible species can better survive
- What about networks? Will they survive?

So far less explicitly addressed: **flexibility** and hence **adaptation**

Today, we will present our **FlexNets project**, comprising of ... … a **definition** of network flexibility and a **flexibility measure** ... … and give examples of how to apply to **stimulate discussions**.
Towards softwarized networks

The Internet is able to adapt its resources ... somehow (best-effort, TCP,...)

early-days simplicity → ossified network system

very slow adaptation to new requirements
→ reaction to dynamic changes hardly possible

Softwarized Networks (SDN, NFV and Network Virtualization) *promise* to adapt networks and functions on demand
All problems solved?

• Are we fully flexible already?
• How far can we go? What is the optimal network design?

We need

• a fundamental understanding of how to provide flexibility
• a quantitative measure for flexibility pro and contra certain designs

Network **flexibility** = ability to support *adaptation requests (challenges)* (e.g., new requirements or traffic patterns) in a **timely** and **efficient** manner

This work is part of a project that has received funding from the European Research Council (ERC) under the European Union’s Horizon 2020 program grant agreement No 647158 – **FlexNets (2015 – 2020)**.

www.networkflexibility.org
Why do we think flexibility analysis is important?

• Enables operators to **cover the future**!
 – react to regulatory changes and fast arrival of new technologies

• A key **decision factor** between network designs
 – can be a tie-breaking decisive advantage for a certain network design
 (e.g., centralized vs. distributed? edge computing? CloudRAN?)

• For research and development
 – which technical concepts lead to more flexibility in network design?
 → **optimize** networks **for flexibility**
 → **design guidelines** for more flexible networks

• SoA: lack of a concrete definition and a quantitative analysis!
 • **We need a proper definition and a measure!**
Flexibility qualitative measure exercise

• Which tool is more flexible?
 • re-configuration shows more potential to be more flexible

• When can both exhibit the same flexibility?
 • maybe there is no need to change → probability of requests make a difference
 • maybe both cannot satisfy my requests → infeasible

• When can the re-configurable tool be less flexible?
 • adaptation time → re-configurable object might not be handy
 • cost → inefficient

Fixed-set tool vs. Re-configurable tool box

Source: Magazin.com
Measuring Network Flexibility (our proposal)

(comparing network designs)

Input: Constraints T, C

1. Design sequence $\mathbb{C} = \{s_{i_1,j_1}, s_{i_2,j_2}, \ldots\}$ with $\nu(s_{i,j}) = V$
2. Initialize $\Sigma := 0$
3. FOR $k = 1:K$
 a. Challenge state switch $S_{i_k} \mapsto S_{j_k}$
 b. Observe τ_X and c_X
 c. If $\tau_X \leq T$ and $c_X \leq C$: $\Sigma := \Sigma + 1$
4. END
5. $\phi(T, C) := \Sigma/K$

Flexibility

$$\phi(T, C) = \frac{|\text{supported requests within constraints } (T, C)|}{|\text{Number of requests}|}$$

based on mathematical foundation
Case study: Dynamic Controller Placement

- Traffic fluctuations require control plane to adapt in order to achieve better control performance → *Dynamic Control Plane*
- SDN controller migration & SDN switch reassignment

<table>
<thead>
<tr>
<th>Flexibility Aspect</th>
<th>New Request</th>
<th>Flexibility Measure</th>
<th>System Objective</th>
<th>Cost in focus</th>
</tr>
</thead>
<tbody>
<tr>
<td>function placement</td>
<td>new flow arrival (from distribution)</td>
<td>fraction of successful controller placements</td>
<td>control performance: (min. avg. flow setup time)</td>
<td>operation latency (OPEX): avg. flow setup time</td>
</tr>
</tbody>
</table>
Case study: Dynamic Controller Placement

- Flexibility \rightarrow Migration Success Ratio
 - Calculate controller migration and switch reassignment time $T_{migration}$
 - If $T_{migration}$ smaller than $T \rightarrow$ count as a supported request

$$\varphi_T(S) = \frac{|\text{supported requests within } T|}{|\text{given new requests}|}$$

Varying traffic flow profiles

max. adaptation time threshold (will be varied)

SDN controller migration and switch reassignment can be done within T

$C \rightarrow \infty$ recorded
Case study: Dynamic Controller Placement

More controllers (larger migration time threshold) \rightarrow higher flexibility

Single controller case: more flexible for tight time threshold as probability that single controller stays in optimal location is high

- 1 controller \rightarrow marginal performance improvement vs. adaptation T
- 4 controllers \rightarrow significant performance improvement vs. adaptation T

However, if we consider all cost factors, we can reach a trade-off!

Key takeaways: Flexibility matters!

for a meaningful system analysis a **flexibility definition is important**

to compare and design networks for flexibility

our **flexibility measure**
supports a quantitative **comparison** between multiple systems
can be used to optimize for flexibility

join us on networkflexibility.org
References for this talk

W. Kellerer, A. Basta, A. Blenk, Using a Flexibility Measure for Network Design Space Analysis of SDN and NFV, IEEE INFOCOM Workshop, SWFAN’16, SF, USA, April 2016.

many more on networkflexibility.org

and