
CESSNA:
Resilient Edge Computing

Yotam Harchol
UC Berkeley

Joint work with: Aisha Mushtaq, Murphy McCauley,
Aurojit Panda, Scott Shenker

SIGCOMM MECOMM Workshop, Budapest, Hungary, August 2018

Client-Server Computing

Session Establishment

Fate-sharing Server replication

Client-Edge-Server Computing

`

Session goes through the edge

Edge application can be stateful
State depends on packets from both sides and their interleave ordering

Edge may not be reliable

Problem: How to maintain correctness of the state at the edge, under failover / mobility

Examples for Stateful Edge Applications

Compression
at the edge

Video
conferencing*

Online
gaming

Data aggregation
(e.g., for IoT)

* Control channel is stateful, video channel may not be

Goals

Correct Recovery
- New edge “sees” the same

sequence of messages
- Transient “stall”

Survivability
- Arbitrary # of lost edges

- Edge failure never kills session

Client Mobility
Recovery may be needed

at a remote edge

High Throughput
Edge should provide

high throughput

Strawman Solution #1: Replication

Edge is replicated
è Must have multiple hot backups, actively running

and consistently updated
è Not applicable for client mobility

✓ Correct recovery
✘ Survivability
✘ Client mobility
✘ High throughput

Strawman Solution #2: Message Replay

Client keeps a log of its outgoing packets Server keeps a log of its outgoing packets

Problem 1: Packet logs may become very long è can use periodic snapshots
Problem 2: Need to know the replay order between client and server packets è ??

✘ Correct recovery
✓ Survivability
✓ Client mobility
✓ High throughput

The Challenge of Interleave Ordering

Edge1234 4321

Messages arrive at the edge
at two different sockets,

simultaneously

Multiple possible ordering
sequences of messages

The edge is a state-machine -
Each packet changes the state

(state transition)

1

1

Multiple correct states we
could be at after receiving
more than one message

Edge 1

Edge 21234
1234

Faithful Replay: We want to replay
messages in the exact same order

Exactly the same state traversal order

Exactly the same correct state

CESSNA –
Client-Edge-Server for Stateful Network Applications

A software framework for running resilient edge applications

Client application
Unmodified

Server application
Unmodified

Edge application
NEW

Your edge application
comes here

Your server application
comes here

Your client application
comes here

Client agent

Edge API

Edge Platform Server agent

Client Edge Server
C E S S N A F r a m e w o r k

Assumptions:
1. Edge application instance per client-server session
2. Deterministic edge application: no real randomness, no multithreading within an instance

CESSNA

Client keeps a log of its outgoing packets Server keeps a log of its outgoing packets

Edge tracks ordering as it handles packets
Attaches ordering information to outgoing packets

Edge takes periodic snapshots and sends to client, or to another edge
à Packet logs and ordering info are safely pruned

Recovery algorithm: enables faithful replay

Ordering Ordering

One recovery
option: remote
(cold) recovery

Local Recovery

Ordering

Local recovery storage

Designated alternate edge

Two operational modes:
Cold standby: Upon failure, instantiate alternate edge
Hot standby: Alternate edge always running with latest snapshot

Recovery Algorithm

Client messages:

Server messages:

C. ordering:

2 6543

6543 3 34221121

1

LMBS: 1

LCMBS: 1

(last message before snapshot)

(last common message before snapshot)

Input:

S. ordering: 3 45342211

LMRC:
LMRS:

5

3

(last message received by client)

(last message received by server)

Edge App

ServerClient

Local Cache

Netflix instance

Netflix instance

Netflix instance

Netflix instance

Cache

Netflix server

Edge

Edge Machine

CESSNA Design

Native Application
Socket

Interposition Layer

Client Agent TCP Proxy

Edge Agent

Container

Edge Application

Edge API

Runtime Engine Daemon

Native Application

TCP Proxy Server Agent

Application
Cache

Client Edge Server

Local Recovery
Server

Data plane link

Control plane link

On connect()

(somewhat different than in the paper)

Edge App API
Must implement:
• recv_client_msg(data)
• recv_server_msg(data)

Optional:
• init()
• accept_client_connection()
• shutdown()

Provided:
• send_msg_to_client(data)
• send_msg_to_server(data)
• cache_read(obj_name)
• set_timeout(func, time)

Example: Edge Compression Service

class CompressionApp(cessna_app.Application):
def __init__(self):

cessna_app.Application.__init__(self)
self.compressor = zlib.compressobj()
self.decompressor = zlib.decompressobj()

def recv_server_msg(self, data):
decomp = self.decompressor.decompress(data)
decomp += self.decompressor.flush()
self.send_msg_to_client(decomp)

def recv_client_msg(self, data):
comp = self.compressor.compress(data)
comp += self.compressor.flush(zlib.Z_FULL_FLUSH)
self.send_msg_to_server(comp)

Edge Machine

Initial Implementation

Native Application
Socket

Interposition Layer

Client Agent TCP Proxy

Edge Agent

Container

Edge Application

Edge API

Runtime Engine Daemon

Native Application

TCP Proxy Server Agent

Application
Cache

Client Edge Server

Local Recovery
Server

Data plane link

Control plane link

Blind Forwarder

Edge
Compression
Multiplayer
Battleship

IoT Aggregation

On connect()

Initial Evaluation
(Not part of the workshop paper)

C,E,S co-located
C,E – West US, S - varies

Overhead < 600 μs

Snapshot Latency Overhead

0 20 40 60 80 100 120 140
Application Memory Usage [MB]

0

500

1000

1500
Sn

ap
sh

ot
 O

ve
rh

ea
d

[m
s]

Recovery Latency Overhead

For cold recovery:
Docker restore: 87% (488 ms)
Snapshot loading: 10% (57 ms)
Recovery algorithm: 3% (20 ms)

N. Virginia N. California Frankfurt
Local Hot Local Cold Remote Remote Remote

0

200

400

600

800

1000

1200

1400

La
te

nc
y

O
ve

rh
ea

d
[m

s]

(Original edge in N. Virginia)

Future Work

• Improve snapshot & recovery times
• Use different edge runtimes
• Use language-level snapshotting / serialization

• CESSNA over HTTP – work in progress

• Multiple clients per session – hard problem!

Conclusions

• Consistency of stateful edge applications is challenging
• State is dependent on two parties
• Edge platforms are considered less reliable

• CESSNA provides strong correctness guarantees
• Also enables client mobility with edge

• Two recovery modes for efficient recovery
• Local recovery – hot / cold standby
• Remote recovery

• Per packet latency overhead < 700 μs

Questions?
Thank you

