Anveshak: Placing Edge Servers In The Wild

Nitinder Mohan Aleksandr Zavodovski Pengyuan Zhou Jussi Kangasharju
University of Helsinki
{firstname.lastname@helsinki.fi}
Edge Cloud Overview

Edge Cloud: Small-scale server(s) deployed at network edge to compute user data

Motivation:
- Decreased latency and network traffic
- Computing data of local relevance
Edge Cloud Overview

Edge Cloud: Small-scale server(s) deployed at network edge to compute user data

Motivation:
- Decreased latency and network traffic
- Computing data of local relevance
Edge Cloud Deployment

1. What are these servers configuration?
2. Who owns and operates them?
3. Where are these servers going to be deployed in the physical world?
Physical Edge Cloud Network

1. Multiple edge cloud deployments can co-exist in same physical space

2. Edge server availability will directly affect end utilization
 - Usage of cellular-based internet in areas where WiFi is available
1. Subscribers and requesters of edge resources
2. User density directly impacts local edge server utilization
3. Request distribution is highly dependent on time and behavior
 - More user requests during daytime than in night
 - More user requests in city than suburban areas
User-Managed Edge

1. **Composed of**: self-managing, locally-relevant edge resources
 - e.g. smart speakers, home automation, intelligent WiFi hubs

2. Limited computational-power and network capability

3. High server density
 - Dependent on user population
 - One server caters to small set of users

Service Provider Managed Edge

1. **Composed of:** high computation and network capable edge servers

2. Set up specifically by cloud provider in partnership with local ISP

3. Co-located/accessible with cellular base stations for *ease-of operation and maintenance*

4. Low server density
 - One server caters to large set of users

New Server Deployment*

*from Service Provider perspective

Which location to deploy new edge server?

Over-provisioning!
- Connectivity can be overlapping
- Future utilization can be minimal

Under-provisioning!
- Maintain a Quality-of-Service
- Must support peak request traffic
Considerations

Deploying managed edge servers is expensive!

An efficient server deployment algorithm must:
Considerations

Deploying managed edge servers is expensive!

An efficient server deployment algorithm must:

1. Prioritize areas with high user requests
Deployment Considerations

Deploying managed edge servers is expensive!

An efficient server deployment algorithm must:
1. Prioritize areas with high user requests
2. Avoid areas with high user-managed edge resources
Anvoshak
System Workflow

- Three-phase waterfall-based workflow
- Intermediate phase checkpoints for recoverability
- Swappable phase modules for incorporating improved algorithms and parameters
- Anveshak is *first-of-its-kind* framework which considers user-managed edge in location selection
Phase I: User Mapping

AIM: Identify and prioritize areas of high user communication requests

- High server utilization
- Low user-server connection latency

Phase I Diagram

1. Divide location L into $N \times N$ grid
2. Map user request pattern to L
3. Cluster user requests to grid
4. Generate request density heatmap

Candidate Grid Locations (G_L)
Phase I: User Mapping

Divide map into equi-spaced N×N grid

- Grid division allows for consistent clustering
- Grid size directly affects problem search space

Phase I

- Divide location L into N×N grid
- Map user request pattern to L
- Cluster user requests to grid
- Generate request density heatmap

Candidate Grid Locations (G_L)
Phase I: User Mapping

Past user communication requests such as CDRs, internet initiation are mapped on location

- Requests are averaged over time to remove temporal outliers
Cluster user requests based on inter-request distances and densities

- Choice of clustering algorithms and their parameters can be easily tweaked [DBScan used as example]
Phase I: User Mapping

Generate heatmap for arbitrary cluster shapes
- Handles over-lapping shapes, small/dense clusters
- Handles any inefficiency of clustering algorithm
Phase I: User Mapping

Divide location L into NxN grid
Map user request pattern to L
Cluster user requests to grid
Generate request density heatmap

\[G_L = \{\text{Grid ID, Request Density}\} \]
Phase II: User Edge Incorporation

• Anveshak estimates future deployment of user-managed edge resources
• Availability of user-edge servers will limit utilization of deployed edge in same location
• Such devices are highly dependent of user population and interaction in an area

Estimated via current deployment of WiFi access points

INPUT: $G_L = \{\text{Grid ID, Request Density}\}$
Phase II: User Edge Incorporation

Map currently deployed WiFi access points in the same area

- Utilize open datasets for WiFi access points such as wigle.net
- Filter out mobile and temporary access points

![Diagram of Phase II process]

Phase II

Filter APs based on ownership

Map filtered APs in G_L

Adjust G_L request density

Selected grids $G_{L\text{updated}}$
Phase II: User Edge Incorporation

Map all filtered access points on Phase I heatmap

- Cluster nearby access points based on densities
Phase II: User Edge Incorporation

Reduce grid densities based access point availability density

- Resulting heatmap denotes grids with overflowing user requests
Phase II: User Edge Incorporation

\[G_{L}^{\text{updated}} = \{g_{11}, d_{11};\]
\[g_{12}, d_{12};\]
\[g_{13}, d_{13};\]
\[. \]
\[g_{nn}, d_{nn}\} \]
Phase III: Edge Location Selection

1. Select the **best set** of deployment locations considering connectivity to end users
2. Base stations are taken as possible deployment locations

Location selection best resembles Facility Location Problem (FLP)

Please check our paper for more details
Evaluation
Evaluation

Evaluate Anveshak’s placement of ‘k’ edge servers on ‘n’ possible locations in Milan, Italy
Evaluation

Evaluate Anveshak’s placement of ‘k’ edge servers on ‘n’ possible locations in Milan, Italy
Evaluation

Evaluate Anveshak’s placement of ‘k’ edge servers on ‘n’ possible locations in Milan, Italy
Evaluation

Evaluate Anveshak’s placement of ‘k’ edge servers on ‘n’ possible locations in Milan, Italy
Evaluation

Evaluate Anveshak’s placement of ‘k’ edge servers on ‘n’ possible base-stations in Milan, Italy

A. With real datasets

1. User requests: Published by Telecom Italia
2. Service-provider edge locations: Published by OpenCellid
3. User-managed edge locations: Published by WiGLE
Evaluation

Evaluate Anveshak’s placement of ‘k’ edge servers on ‘n’ possible base-stations

B. With two approaches

1. Greedy: Allocates user request densities to grids and selects top-k maximum serving base-stations

2. Random: Randomly chooses k valid base-stations
Evaluation

Setup

1. User is mapped to nearest base station using coordinate based latency approximation
2. Deployment framework selects 50 edge location out of 850+
Q. How many user requests are handled by Anveshak’s placed edge servers?

1. 67% more requests than Greedy
2. 25% of total requests handled by 8% of selected base stations

Can achieve 90% user satisfaction by placing 124 servers over 218 and 300+ by Greedy and Random
Q. How busy are the deployed servers?

Assumption: All user requests in a grid are first handled by user-managed edge

More user request density areas have more user-managed edge resources leading to less utilization of deployed server
Conclusion

1. Anveshak is a deployment framework designed to assist service providers

2. It efficiently identifies optimal locations for edge server placement while considering:
 - Density of user requests
 - Density of future deployment of user-managed edge resources

3. We evaluate Anveshak and other deployment algorithms on real datasets

4. Anveshak achieves 67% increase in user satisfaction with 83% server utilization
Thank You!
Questions?

nitinder.mohan@helsinki.fi
Backup Slides
How is Anveshak different from CDN server placement?

Similarities:
1. Both problems must ensure consistent and least connectivity to end-clients
2. Both problems must optimize for cost of deployment

Differences:
1. Unlike content, edge server handles requests which are short-lived and locally-relevant
2. Focuses more on server availability and network latency than network bandwidth
Anveshak assumes that the deployed edge server will be co-located with a base station

- From Phase II heatmap, select exact base station location which satisfies maximum user requests
- Selected base station must be able to service maximum users in 1-2 hops
- List of exact base station locations can be made available with partnering ISP

Phase III: Edge Location Selection

- Rank G_L on decreasing request density
- Identify base station $l \in G_L$
- Solve Facility Location Problem in G_L
Phase III: Edge Location Selection

Prioritize the grid locations based on *updated* user request density

\[G_L = \{g_{11}, d_{11}; g_{12}, d_{12}; g_{13}, d_{13}; \ldots; g_{nn}, d_{nn}\} \]
Phase III: Edge Location Selection

Prioritize the grid locations based on updated user request density

\[G_L = \{g_{11}, d_{11}; \ g_{12}, d_{12}; \ g_{13}, d_{13}; \ldots; \ g_{nn}, d_{nn}\} \]
Phase III: Edge Location Selection

Prioritize the grid locations based on updated user request density

\[G_L = \{ g_{13}, d_{13}; \\
g_{32}, d_{32}; \\
g_{61}, d_{61}; \\
\ldots \\
g_{n7}, d_{n7} \} \]

where, \(G_L \{d_1\} > G_L \{d_2\} > \ldots > G_L \{d_{\text{last}}\} \)
Phase III: Edge Location Selection

\[G_L = \{ g_{13}, d_{13}; g_{32}, d_{32}; g_{61}, d_{61}; \ldots; g_{n7}, d_{n7} \} \]
Phase III: Edge Location Selection

Select optimal base station \((S_i)\) in \(G_L[i]\) satisfying maximum user requests [Phase I]

- We focus on location and not density
Phase III: Edge Location Selection

Select optimal base station (S_i) in $G_L[i]$ satisfying maximum user requests [Phase I]

- We focus on location and not density
Phase III: Edge Location Selection

Network cost of connectivity \(n_{(u,S)} \)

\[
n_{(u,S)} = \alpha \times R_{(u,S)}
\]

where,

\[
R_{(u,S)}^{\text{max}} = \max[u - S_i] \quad \forall \ u_i \in U \ & \ i \in L
\]

\(\alpha = \) maximum server access cost

Identify base station \(l \in G_L \)

Solve Facility Location Problem in \(G_L \)

Rank \(G_L \) on decreasing request density
Phase III: Edge Location Selection

Objective: Minimize one-hop latency between users and selected server location

\[S_u = \min \sum_{l \in L} \{ S_l \mid S_l \in S, \ n_{(u,S_l)} < n_{max}\} x_l \]

where, \(x_l \in \{0,1\} \)
Phase III: Edge Location Selection

\[S_u = \min \sum_{l \in L} \{ S_l \mid S_l \in S, n_{(u,S_l)} < n_{max} \} x_l \]

- NP-hard problem
- Approximation-based solvers available [ODL, Sitation]

Anveshak’s Advantage:
- Grid size as additional constraint, reduce problem size
- Due to problem’s future outlook, exact optimization is not required!

Phase III

1. Rank \(G_L \) on decreasing request density
2. Identify base station \(/ \in G_L \)
3. Solve Facility Location Problem in \(G_L \)
Datasets

(1/3) User Request Dataset

• Published by Telecom Italia* for Milan, Italy
• Anonymized details of Call Detail Records (CDRs), internet connectivity of users in the region
• Data of November 1st to December 31st 2013

*https://dandelion.eu/datamine/open-big-data/
Datasets

(2/3) Service-provider Edge Dataset

- Published by OpenCellid*
- Details of cellular base stations such as connectivity type (3G/4G), area etc. along with their GPS coordinates
- *Post filtration*: 800+ LTE base stations
- Each base station is associated to the map grid

*https://www.opencellid.org
Datasets

(3/3) User-managed Edge Dataset

- Published by WiGLE*
- Details of WIFI access points such as SSID, signal strength, channel number etc. along with GPS coordinates
- 800+ base stations Milan, Italy serving LTE connection

*https://wigle.net/