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The rise of artificial intelligence

M Deep learning is a popular technique that have been applied in many fields
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Object Detection Voice Recognition Image Semantic Segmentation



Why is deep learning successful

B Deep neural network is an important reason to promote the development of deep
learning
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The headache of deep learning

B Deep Learning applications can not be well supported by today’s mobile devices due
to the large amount of computation.
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What about Cloud Computing?

B Under a cloud-centric approach, large amounts of data are uploaded to the remote

cloud, resulting in high end-to-end latency and energy consumption.
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Exploiting of Edge Computing

B By pushing the cloud capacities from the network core to the network edges (e.g. , base stations and
Wi-Fi access points) in close to devices, edge computing enables low-latency and energy-efficient

performance.
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Existing effort of Edge Intelligence

Framework Highlight

Deep learning model partitioning
Neurosurgeon (ASPLOS 2017) between cloud and mobile device,
intermediate data offloading

Delivering Deep Learning to Mobile Devices
via Offloading (SIGCOMM VR/AR Network
2017)

Offloading video input to edge server,
according to network condition

DeepX (IPSN 2016) Deep learning model are partitioned on
P different local processers
Deep learning model partitioning

CoINF (arav 2017) between smartphones and wearables

Existing effort focus on data offloading and local optimization



System Design

Our Goal

B With the collaboration between edge server and mobile device, we want to tune the
latency of a deep learning model inference

Two Design Knobs

B Deep Learning Model Partition
B Deep Learning Model Right-sizing



Two Design Knobs

B Deep Learning Model Partition
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[1] Kang, Yiping, et al. "Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge." /nternational Conference on ASPLOS ACM, 2017:615-629.



Two Design Knobs

[]
B Deep Learning Model Right-sizing
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[2] Teerapittayanon, Surat, B. Mcdanel, and H. T. Kung. "BranchyNet: Fast inference via early exiting from deep neural networks." ICPR IEEE, 2017:2464-2469.



A Tradeoff

A Tradeoff

B Early-exit naturally gives rise to the latency-accuracy tradeoff(i.e., early-exit harms the
accuracy of the inference).
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Problem Definition

B For mission-critical applications that typically have a predefined latency
requirement, our framework maximizes the accuracy without violating the
latency requirement.



System Overview

@ Offline Training Stage
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System Overview

@ Offline Training Stage 4

» Training regression models for layer

runtime prediction

» Training AlexNet with BranchyNet
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System Overview

4 € Online Optimization Stage

» Searching for exit point and partition point
c) Regression Models
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System Overview

2 € Online Optimization Stage 4
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Experimental Setup

B Deep Learning Model
[0 AlexNet with five exit point (built on Chainer deep learning framework)
[ Dataset: Cifar-10
[ Trained on a server with 4 Tesla P100 GPU
B Local Device: Raspberry Pi 3b
B Edge Server: A desktop PC with a quad-core Intel processor at 3.4 GHz with 8 GB of RAM



Experiments

Regression Model

Table 1: The independent variables of regression models

Layer Type Independent Variable
Convolution amount_ of inp_ut feature maps,
(filter size/stride)”2*(num of filters)
Relu input data size
Pooling input data size, output data size
Llé)ss;i?;gggie input data size
Dropout input data size
Fully-Connected input data size, output data size
Model Loading model size

Local Response Normalization

Latency (ms)
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Experiments

Regression Model

Table 2: Regression Models

Layer Edge Server Model Mobile Device Model
Convolution Y= BREE=S & = 11'24e'4 R RRE e S A ) ) e
Relu y = 5.6e-6 * x + 5.69e-2 y = 1.5e-5*x + 4.88e-1

y = 1.63e-5*x1 + 4.07e-6*x2 + 2.11e-

Pooling y = 1.33e-4 »x1 + 3.31e-5*x2 + 1.657

1
Local Response y = 6.59e-5 * x + 7.80e-2 y = 5.19e-4  x+ 5.89-1
Normalization
Dropout y = 5.23e-6 * x+ 4.64e-3 y = 2.34e-6 » x+ 0.0525
Fully-Connected y =1.07e-4xx1 - 1.83e-4*x2 + 0.164 y=9.18e-4*x1 + 3.99e-3 »x2 + 1.169

Model Loading y = 1.33e-6 *x + 2.182 y = 4.49e-6 » x + 842.136




Experiments

Result

B Selection under different bandwidths

The higher bandwidth

leads to higher accuracy —e— EXit Point
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Experiments

B Inference Latency under different bandwidths
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Experiments

B Selection under different latency requirements

A larger latency goal —e— Exit Point
gives more room for

accuracy improvement
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Experiments

B Comparison with other methods
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KeyTake-Aways

On demand accelerating deep learning model
inference through device-edge synergy

Deep Learning Model Partition
Deep Learning Model Right-sizing

Implementation and evaluations demonstrate
effectiveness of our framework




Future Work

B More Devices

- Energy Consumption Cloud Data Center

Core Network

Intel NCS

Hikey 970



Future Work

B Deep Reinforcement Learning Technique
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Thank you

Contact:.
llen5@mail2.sysu.edu.cn
zhouzh19@mail.sysu.edu.cn
chenxu3b5@mall.sysu.edu.cn
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