Edge Intelligence: On-Demand Deep Learning Model Co-Inference with Device-Edge Synergy

En Li, Zhi Zhou, Xu Chen

The rise of artificial intelligence

■ Deep learning is a popular technique that have been applied in many fields

Object Detection

Voice Recognition

Image Semantic Segmentation

Why is deep learning successful

Deep neural network is an important reason to promote the development of deep learning

The headache of deep learning

Deep Learning applications can not be well supported by today's mobile devices due to the large amount of computation.

AlexNet Params & Flops

AlexNet Layer Latency on Raspberry Pi & Layer Output Data Size

What about Cloud Computing?

Under a cloud-centric approach, large amounts of data are uploaded to the remote cloud, resulting in high end-to-end latency and energy consumption.

Cloud Computing Paradigm

AlexNet Performance under different bandwidth

Exploiting of Edge Computing

■ By pushing the cloud capacities from the network core to the network edges (e.g., base stations and Wi-Fi access points) in close to devices, edge computing enables low-latency and energy-efficient performance.

Existing effort of Edge Intelligence

Framework	Highlight
Neurosurgeon (ASPLOS 2017)	Deep learning model partitioning between cloud and mobile device, intermediate data offloading
Delivering Deep Learning to Mobile Devices via Offloading (SIGCOMM VR/AR Network 2017)	Offloading video input to edge server, according to network condition
DeepX (IPSN 2016)	Deep learning model are partitioned on different local processers
CoINF (arxiv 2017)	Deep learning model partitioning between smartphones and wearables

Existing effort focus on data offloading and local optimization

System Design

Our Goal

■ With the collaboration between edge server and mobile device, we want to tune the latency of a deep learning model inference

Two Design Knobs

- Deep Learning Model Partition
- Deep Learning Model Right-sizing

Two Design Knobs

- Deep Learning Model Partition
- Deep Learning Model Right-sizing

AlexNet Layer Latency on Raspberry Pi & Layer Output Data Size

Deep Learning Model Partition^[1]

Two Design Knobs

- Deep Learning Model Partition
- Deep Learning Model Right-sizing

AlexNet with BranchyNet^[2] Structure

A Tradeoff

A Tradeoff

■ Early-exit naturally gives rise to the latency-accuracy tradeoff(i.e., early-exit harms the accuracy of the inference).

Problem Definition

■ For mission-critical applications that typically have a predefined latency requirement, our framework maximizes the accuracy without violating the latency requirement.

- Offline Training Stage
- Online Optimization Stage
 - ◆ Co-Inference Stage

- Training regression models for layer runtime prediction
- Training AlexNet with BranchyNet structure

♦ Offline Training Stage

- Online Optimization Stage
- ◆ Co-Inference Stage

Searching for exit point and partition point

Select one exit point

◆ Offline Training Stage Online Optimization Stage ◆ Co-Inference Stage Exit Point 2 Exit Point 2 Exit Point 2 FC FC FC **Estimating Infernece** Latency on device CONV CONV CONV Calculating data transmission time Exit Point 1 CONV CON **CONV Estimating Infernece** Latency on FC edge server **CONV** CONV CONV

Find out the partition point

Experimental Setup

- Deep Learning Model
 - AlexNet with five exit point (built on Chainer deep learning framework)
 - □ Dataset: Cifar-10
 - Trained on a server with 4 Tesla P100 GPU
- Local Device: Raspberry Pi 3b
- Edge Server: A desktop PC with a quad-core Intel processor at 3.4 GHz with 8 GB of RAM

Regression Model

Table 1: The independent variables of regression models

Layer Type	Independent Variable	
Convolution	amount of input feature maps, (filter size/stride)^2*(num of filters)	
Relu	input data size	
Pooling	input data size, output data size	
Local Response Normalization	input data size	
Dropout	input data size	
Fully-Connected	input data size, output data size	
Model Loading	model size	

Regression Model

Table 2: Regression Models

Layer	Edge Server Model	Mobile Device Model
Convolution	y = 6.03e-5 * x1 + 1.24e-4 * x2 + 1.89e-	y = 6.13e-3 * x1 + 2.67e-2 * x2 - 9.909
Relu	y = 5.6e-6 * x + 5.69e-2	y = 1.5e-5 * x + 4.88e-1
Pooling	y = 1.63e-5 * x1 + 4.07e-6 * x2 + 2.11e-	y = 1.33e-4 * x1 + 3.31e-5 * x2 + 1.657
Local Response Normalization	y = 6.59e-5 * x + 7.80e-2	y = 5.19e-4 * x+ 5.89e-1
Dropout	y = 5.23e-6 * x+ 4.64e-3	y = 2.34e-6 * x+ 0.0525
Fully-Connected	y = 1.07e-4 * x1 - 1.83e-4 * x2 + 0.164	y = 9.18e-4 * x1 + 3.99e-3 * x2 + 1.169
Model Loading	y = 1.33e-6 * x + 2.182	y = 4.49e-6 * x + 842.136

Result

Selection under different bandwidths

The higher bandwidth leads to higher accuracy

(a) Selection under different bandwidths

■ Inference Latency under different bandwidths

Our proposed regression-based latency approach can well estimate the actual deep learning model runtime latency.

(b) Model runtime under different bandwidths

Selection under different latency requirements

A larger latency goal gives more room for accuracy improvement

(c) Selection under different latency requirements

Comparison with other methods

The inference accuracy comparison under different latency requirement

Key Take-Aways

On demand accelerating deep learning model inference through device-edge synergy

Deep Learning Model Partition
Deep Learning Model Right-sizing

Implementation and evaluations demonstrate effectiveness of our framework

Future Work

Future Work

Deep Reinforcement Learning Technique

Deep Reinforcement Learning for Model Partition

Thank you

Contact:

lien5@mail2.sysu.edu.cn zhouzhi9@mail.sysu.edu.cn chenxu35@mail.sysu.edu.cn