
Edge Intelligence: On-Demand Deep Learning Model
Co-Inference with Device-Edge Synergy

En Li, Zhi Zhou, Xu Chen

Sun Yat-Sen University
School of Data and Computer Science

The rise of artificial intelligence

◼ Deep learning is a popular technique that have been applied in many fields

Image Semantic SegmentationVoice RecognitionObject Detection

Why is deep learning successful

◼ Deep neural network is an important reason to promote the development of deep
learning

The headache of deep learning

◼ Deep Learning applications can not be well supported by today’s mobile devices due
to the large amount of computation.

AlexNet Params & Flops
AlexNet Layer Latency on Raspberry Pi

& Layer Output Data Size

What about Cloud Computing?

◼ Under a cloud-centric approach, large amounts of data are uploaded to the remote
cloud, resulting in high end-to-end latency and energy consumption.

Cloud Computing Paradigm AlexNet Performance under
different bandwidth

Exploiting of Edge Computing

◼ By pushing the cloud capacities from the network core to the network edges (e.g. , base stations and
Wi-Fi access points) in close to devices, edge computing enables low-latency and energy-efficient
performance.

Existing effort of Edge Intelligence

Framework Highlight

Neurosurgeon (ASPLOS 2017)
Deep learning model partitioning
between cloud and mobile device,

intermediate data offloading

Delivering Deep Learning to Mobile Devices
via Offloading (SIGCOMM VR/AR Network

2017)

Offloading video input to edge server,
according to network condition

DeepX (IPSN 2016)
Deep learning model are partitioned on

different local processers

CoINF (arxiv 2017)
Deep learning model partitioning

between smartphones and wearables

Existing effort focus on data offloading and local optimization

System Design

Our Goal

◼ With the collaboration between edge server and mobile device, we want to tune the
latency of a deep learning model inference

Two Design Knobs

◼ Deep Learning Model Partition

◼ Deep Learning Model Right-sizing

AlexNet Layer Latency on Raspberry Pi
& Layer Output Data Size

Deep Learning Model Partition[1]

◼ Deep Learning Model Partition

◼ Deep Learning Model Right-sizing

[1] Kang, Yiping, et al. "Neurosurgeon: Collaborative Intelligence Between the Cloud and Mobile Edge." International Conference on ASPLOS ACM, 2017:615-629.

Two Design Knobs

Two Design Knobs

◼ Deep Learning Model Partition

◼ Deep Learning Model Right-sizing

AlexNet with BranchyNet[2] Structure

[2] Teerapittayanon, Surat, B. Mcdanel, and H. T. Kung. "BranchyNet: Fast inference via early exiting from deep neural networks." ICPR IEEE, 2017:2464-2469.

A Tradeoff

◼ Early-exit naturally gives rise to the latency-accuracy tradeoff(i.e., early-exit harms the
accuracy of the inference).

AlexNet with BranchyNet[2] Structure

[2] Teerapittayanon, Surat, B. Mcdanel, and H. T. Kung. "BranchyNet: Fast inference via early exiting from deep neural networks." ICPR IEEE, 2017:2464-2469.

A Tradeoff

Problem Definition

◼For mission-critical applications that typically have a predefined latency
requirement, our framework maximizes the accuracy without violating the
latency requirement.

System Overview

◆ Offline Training Stage ◆ Online Optimization Stage ◆ Co-Inference Stage

System Overview

◆ Offline Training Stage ◆ Online Optimization Stage ◆ Co-Inference Stage

➢ Training regression models for layer

runtime prediction

➢ Training AlexNet with BranchyNet

structure

System Overview

◆ Offline Training Stage ◆ Online Optimization Stage ◆ Co-Inference Stage

➢ Searching for exit point and partition point

System Overview

Select one exit point Find out the partition point

◆ Offline Training Stage ◆ Online Optimization Stage ◆ Co-Inference Stage

Experimental Setup

◼ Deep Learning Model

 AlexNet with five exit point (built on Chainer deep learning framework)

 Dataset: Cifar-10

 Trained on a server with 4 Tesla P100 GPU

◼ Local Device: Raspberry Pi 3b

◼ Edge Server: A desktop PC with a quad-core Intel processor at 3.4 GHz with 8 GB of RAM

Experiments

Regression Model

Table 1: The independent variables of regression models

Experiments

Regression Model
Table 2: Regression Models

Layer Edge Server Model Mobile Device Model

Convolution
y = 6.03e-5 * x1 + 1.24e-4 * x2 + 1.89e-

1
y = 6.13e-3 * x1 + 2.67e-2 * x2 - 9.909

Relu y = 5.6e-6 * x + 5.69e-2 y = 1.5e-5 * x + 4.88e-1

Pooling
y = 1.63e-5 * x1 + 4.07e-6 * x2 + 2.11e-

1
y = 1.33e-4 * x1 + 3.31e-5 * x2 + 1.657

Local Response
Normalization

y = 6.59e-5 * x + 7.80e-2 y = 5.19e-4 * x+ 5.89e-1

Dropout y = 5.23e-6 * x+ 4.64e-3 y = 2.34e-6 * x+ 0.0525

Fully-Connected y = 1.07e-4 * x1 - 1.83e-4 * x2 + 0.164 y = 9.18e-4 * x1 + 3.99e-3 * x2 + 1.169

Model Loading y = 1.33e-6 * x + 2.182 y = 4.49e-6 * x + 842.136

Experiments

Result

◼ Selection under different bandwidths

The higher bandwidth
leads to higher accuracy

Experiments

◼ Inference Latency under different bandwidths

Our proposed
regression-based
latency approach can
well estimate the actual
deep learning model
runtime latency.

Experiments

◼ Selection under different latency requirements

A larger latency goal
gives more room for
accuracy improvement

Experiments

◼ Comparison with other methods

The inference accuracy comparison under different latency requirement

Implementation and evaluations demonstrate
effectiveness of our framework

On demand accelerating deep learning model
inference through device-edge synergy

KeyTake-Aways

Deep Learning Model Partition
Deep Learning Model Right-sizing

Future Work

◼ More Devices

◼ Energy Consumption

Future Work

◼ Deep Reinforcement Learning Technique

Deep Reinforcement Learning for Model Partition

Thank you

Contact:
lien5@mail2.sysu.edu.cn
zhouzhi9@mail.sysu.edu.cn
chenxu35@mail.sysu.edu.cn

mailto:lien5@mail2.sysu.edu.cn
mailto:zhouzhi9@mail.sysu.edu.cn
mailto:chenxu35@mail.sysu.edu.cn

