Edge-assisted Traffic Engineering and Applications in the IoT

Nikos Fotiou, Dimitrios Mendrinos, George C. Polyzos

Motivation

IoT group communication

GET coap://building1.green

GET coap://building1.green

GET coap://building1.green

PUT coap://yellow ON

PUT coap://yellow ON

PUT coap://yellow ON

Recommended implementation approach

- For each possible group create an IP multicast group
- All Things should join the corresponding IP multicast groups
- Add the appropriate DNS entries

An alternative approach

Leverage edge and SDN technology

Design Goals

- No modification to endpoints
- Use only existing standards

SDN underlay

Enhanced SDN controller

- The controller knows the whole topology and link identifiers
- Each edge node is associated with a set of "tags"
 - E.g., building1, yellow, green
- The controller can create paths from one edge node to others with specific tags
 - E.g., a path form a node towards all "yellow" nodes

PUT coap://yellow ON

Path to yellow

PUT coap://yellow ON

Path to yellow

PUT coap://yellow ON

Path to yellow

Benefits and status

- No need for IP multicast support
- Easier group management
- Things do not have to be aware of the groups they belong

- Implemented for mininet, POX SDN controller, and the CoAP protocol
- Topology initially included in a configuration file
 - Now the SDN controller discover the topology

Thank you

fotiou@aueb.gr