Tracking Groups in Mobile Network Traces

Kun Tu*, Bruno Ribeiro**, Ananthram Swami***, Don Towsley*
*University of Massachusetts, Amherst
**Purdue University
***Army Research Lab

Presented by Gayane Vardoyan
Groups in Mobile Network Trace

• Most mobility models assume independent movements
• Several ad hoc mobility models
 • Random direction, waypoint model
 • Leader based group models

Q: what is a realistic group mobility model?
Answering question requires obtaining group information from mobility data

How to do so – focus of talk
Outline

• Model and problem formulation
• Tensor decomposition
• Extracting group information from tensor components
• Experiments
• Conclusion
Idea

• Represent dataset as 3-D tensor, Y
 • Snapshots over time
 • Snapshot: adjacency matrix, Euclidean distances

• Decompose tensor into R components

• From component r
 • Identify groups from $A^{(r)}$
 • Identify group formation, dissolution times from $\lambda^{(r)}$
Challenges

• Time granularity of snapshots
 • Fine time scale: sparse snapshot, difficult for group detection
 • Coarse time scale: loss of detailed changes, resulting in high error for lifetime detection

• Tracking changes in groups
 • creation/dissolution
 • changes in group composition
 • membership in multiple groups
Our model

- Tensor $\mathbf{Y} = [Y_{ijt}]$, Y_{ijt} - closeness of user i to user j at time t
- Approximate Y_{ijt} by R components
 \[\hat{Y}_{ijt} = \sum_{r=1}^{R} a_{ir} a_{jr} \lambda^{(r)}(t) \]
 - $a_{ir} \in A^{(r)}$: probability of user i in component r
 - $\lambda^{(r)}$: time series representing node similarities at different time steps
Our Model

• Tensor $Y = [Y_{ijt}]$, Y_{ijt}- closeness of user i to user j at time t

• Approximate Y_{ijt} by R components

 \[\hat{Y}_{ijt} = \sum_{r=1}^{R} a_{ir}a_{jr}\lambda^{(r)}(t) \]

• $a_{ir}, \lambda^{(r)}(t)$ obtained from minimizing

 \[\sum_{i,j \in V} \sum_{t} (Y_{ijt} - \sum_{r} a_{ir}a_{jr}\lambda^{(r)}(t))^{2} \]

• Use alternating least squares algorithm to solve

 • gradient descent method to compute a_{ir} and $\lambda^{(r)}(t)$ iteratively
Interpretation

• Use K-means to find group(s) in $A^{(r)} = [a_{ir}]$
 • silhouette clustering criterion used to choose number of groups

• Temporal mode $\lambda^{(r)}(t)$ represents strength of group

• When R chosen properly, one meaningful group per component

• If not, can order groups according to strength using similarity ordering score
Group Lifetime Detection

- $\lambda^{(r)}(t)$ as a time series
- Compare against adaptive threshold based on average similarity
 - above – formation of group
 - below – no group
- Can detect formation, dissolution times
Experiments

• Synthetic datasets

• Lakehurst dataset
 • Military training exercise
Synthetic Dataset

• 400 nodes in 4 initial groups move according to random direction model (RD) for 10,000 seconds
• Each group divides into 4 subgroups, subgroups move to different areas, form new groups
• 1000 repetitions, different parameter settings
Group member detection

- \hat{C}_k: set of members in k-th detected group
- C_k^*: set of members in ground truth group mapped to \hat{C}_k using Jaccard index (intersection of two sets over their union)

- Precision: $P = \frac{|\hat{C}_k \cap C_k^*|}{|\hat{C}_k|}$
- Recall: $R = \frac{|\hat{C}_k \cap C_k^*|}{|C_k^*|}$
- F1 score: $F_1 = \frac{2PR}{P+R}$

- Precision Recall Curve (PR-curve): evaluate precision of methods when recall is similar

- Similar metrics for group lifetime: F1 score
Baseline methods:

Evolutionary Clustering (EC) (Deepayan et al., 2006)
• Clustering on each network snapshot
 • Pros: fast
 • Cons: fails in multi-membership, sparse network, tracking cluster changes

Binary clustering (BC) (Laetitia et al., 2014)
• Detect cluster on tensor factorization result with fixed threshold
 • Pros: work for multi-membership, sparse network, tracking lifetime
 • Cons: difficulty in fine tuning # groups leads to high detection error
Group Member Detection

• Effect of time granularity (w)
 • Proposed method temporal clustering (TC) and BC robust to time granularity
 • EC works poorly with fine granularity
• TC has better precision than BC given same recall
Lifetime Detection

• Coarse granularity
 • reduces accuracy of TC, BC
 • improves EC performance because of increased accuracy in member detection

• TC has better precision than BC given same recall
Summary for synthetic data

• Our temporal clustering method (TC)
 • Is robust to change in time granularity in member detection
 • Performs as well as BC and better than EC
Lakehurst Military Dataset

• Three hour trace, 70 vehicles
• 64 vehicles split into 9 platoons
• Another six vehicles move separately
• Platoons combine to form large group from time to time
• 19 groups total
Lakehurst dataset Results

- TC performs as well or better than other methods
- Large R improves recalls for TC and BC

<table>
<thead>
<tr>
<th># component (R)</th>
<th>10</th>
<th>15</th>
<th>20</th>
<th>25</th>
<th>30</th>
</tr>
</thead>
<tbody>
<tr>
<td>TC Group Recall</td>
<td>0.368</td>
<td>0.421</td>
<td>0.587</td>
<td>0.895</td>
<td>1.0</td>
</tr>
<tr>
<td>BC Group Recall</td>
<td>0.319</td>
<td>0.421</td>
<td>0.579</td>
<td>0.895</td>
<td>1.0</td>
</tr>
<tr>
<td>TC Member Recall</td>
<td>0.430</td>
<td>0.541</td>
<td>0.841</td>
<td>0.875</td>
<td>0.904</td>
</tr>
<tr>
<td>BC Member Recall</td>
<td>0.430</td>
<td>0.532</td>
<td>0.841</td>
<td>0.862</td>
<td>0.904</td>
</tr>
<tr>
<td>EC Group Recall</td>
<td></td>
<td></td>
<td></td>
<td>0.474</td>
<td></td>
</tr>
<tr>
<td>EC Member Recall</td>
<td></td>
<td></td>
<td></td>
<td>0.275</td>
<td></td>
</tr>
</tbody>
</table>
Group Lifetime Behavior

• Lifetime tracking for a group
 • Formed by platoon 7 and platoon 8 who meet at multiple waypoints
 • Formation & dissolution with time series segmentation algorithm
 • Detect lifetime using adaptive threshold (average similarity of nodes of whole network)

• Tensor time mode facilitates lifetime identification
Conclusion

• Proposed temporal clustering method to detect groups in mobile trace data

• Method
 • detects multi-membership of individuals
 • robust to changes in time granularity
 • automatically determines number of groups

• Proposed method more accurate than previous methods

• Future directions
 • Model can be applied to directed temporal networks representing relations between users, location and time.
Thank you
Group Member Detection in Lakehurst

- TC has better performance measured by PR curve given different value of hyperparameter R (number of groups)
 - BC has poor precision given same Recall
 - Ranking communities with SO score improves precision on BC