Leveraging Quantum Annealing for Large MIMO Processing in Centralized Radio Access Networks

Presented by

Minsung Kim, Davide Venturelli, Kyle Jamieson
Wireless Capacity has to increase!

- Global mobile data traffic is increasing exponentially.
- User demand for high data rate outpaces supply.
Centralized Data Center

Radio Access Networks (C-RAN)

Users

Multi-User Multiple Input Multiple Output (MU-MIMO)

Centralized Data Center

Centralized Radio Access Networks (C-RAN)
MIMO Detection

Demultiplex Mutually Interfering Streams
Maximum Likelihood (ML) MIMO Detection

: **Non-Approximate** but High Complexity

\[
\hat{v} = \arg\min_{\text{possible } v} \| y - Hv \|^2
\]

\[2^N \log_2 M \text{ possibilities for } N \times N \text{ MIMO with } M \text{ modulation}\]

- **Symbol Vector:** \(v = \begin{bmatrix} v_1 \\ \vdots \\ v_N \end{bmatrix} \)
- **Channel:** \(H = \begin{bmatrix} h_{11} & \ldots & h_{1N} \\ \vdots & \ddots & \vdots \\ h_{N1} & \ldots & h_{NN} \end{bmatrix} \)
- **Noise:** \(n = \begin{bmatrix} n_1 \\ \vdots \\ n_N \end{bmatrix} \)
- **Received Signal:** \(y = Hv + n \)

Time available for processing is at most 3-10 ms.
Sphere Decoder (SD)

- Non-Approximate but High Complexity

Maximum Likelihood (ML) Detection → Tree Search with Constraints

Reduce search operations but fall short for the same reason

<table>
<thead>
<tr>
<th>BPSK</th>
<th>QPSK</th>
<th>16-QAM</th>
<th>Complexity (Visited Nodes)</th>
</tr>
</thead>
<tbody>
<tr>
<td>12 × 12</td>
<td>7 × 7</td>
<td>4 × 4</td>
<td>≈ 40 (✓)</td>
</tr>
<tr>
<td>21 × 21</td>
<td>11 × 11</td>
<td>6 × 6</td>
<td>≈ 270 (△)</td>
</tr>
<tr>
<td>30 × 30</td>
<td>15 × 15</td>
<td>8 × 8</td>
<td>≈ 1900 (✗)</td>
</tr>
</tbody>
</table>

Parallelization of SD
- [Flexcore, NSDI 17],
- [Geosphere, SIGCOMM 14],
- ...

Approximate SD
- [K-best SD, JSAC 06],
- [Fixed Complexity SD, TWC 08],
-
Linear Detection

- **Low Complexity** but Approximate & Suboptimal

Channel: $H = \begin{bmatrix} H_{11} & \cdots & H_{1N} \\ \vdots & \ddots & \vdots \\ H_{N1} & \cdots & H_{NN} \end{bmatrix}$

Symbol Vector: $v = \begin{bmatrix} v_1 \\ \vdots \\ v_N \end{bmatrix}$

Received Signal: $y = Hv + n$

Wireless Channel: H

Noise: $n = \begin{bmatrix} n_1 \\ \vdots \\ n_N \end{bmatrix}$

Performance Degradation due to Noise Amplification

Zero-Forcing

$H^{-1}y = H^{-1}Hv + H^{-1}n$

Nullifying Channel Effect:

* [BigStation, SIGCOMM 13],
* [Argos, MOBICOM 12],
 …
Ideal: High Performance & Low Computational Time
Opportunity: Quantum Computation !
QuAMax: Main Idea

MIMO Detection
Maximum Likelihood (ML) Detection

Quantum Computation
Quantum Annealing

Better Performance?
Motivation: Optimal + Fast Detection = Higher Capacity
QuAMax Architecture

Quantum Processing Unit

Centralized Data Center

Maximum Likelihood Detection

Centralized Radio Access Networks (C-RAN)
Maximum Likelihood Detection

Quadratic Unconstrained Binary Optimization

Quantum Processing Unit

D-Wave 2000Q (Quantum Annealer)
1. PRIMER: QUBO FORM
2. QUAMAX: SYSTEM DESIGN
3. QUANTUM ANNEALING & EVALUATION
Quadratic Unconstrained Binary Optimization (QUBO)

\[\hat{q}_1, \ldots, \hat{q}_N = \arg \min_{\{q_1, \ldots, q_N\}} \sum_{i \leq j}^{N} Q_{ij} q_i q_j \]

Example (two variables)

Q upper triangle matrix:

\[
Q = \begin{bmatrix}
Q_{11} & Q_{12} \\
0 & Q_{22}
\end{bmatrix} = \begin{bmatrix}
2 & -4.5 \\
0 & 0.5
\end{bmatrix}
\]

QUBO objective: \[2q_1 + 0.5q_2 - 4.5q_1 q_2\]

State \((q_1, q_2)\)

- \((0,0)\) \to 0
- \((0,1)\) \to 0.5
- \((1,0)\) \to 2
- \((1,1)\) \to -2

QUBO Energy
1. PRIMER: QUBO FORM
2. QUAMAX: SYSTEM DESIGN
3. QUANTUM ANNEALING & EVALUATION
Maximum Likelihood MIMO detection:

\[\hat{v} = \arg\min_v \|y - Hv\|^2 \]

QUBO Form:

\[\hat{q}_1, \ldots, \hat{q}_N = \arg\min_{\{q_1, \ldots, q_N\}} \sum_{i \leq j}^{N} Q_{ij} q_i q_j \]

The key idea is to represent possibly-transmitted symbol \(v \) with 0,1 variables. If this is linear, the expansion of the norm results in linear & quadratic terms.

Linear variable-to-symbol transform \(T \)
Example: 2x2 MIMO with Binary Modulation

Received Signal: y

Wireless Channel: H

Symbol Vector: $v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix}$

$\hat{v} = \text{arg} \min_{\text{possible } v} \|y - Hv\|^2$

possible $\begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \in \begin{bmatrix} +1 \\ +1 \end{bmatrix}, \begin{bmatrix} +1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ -1 \end{bmatrix}, \begin{bmatrix} -1 \\ +1 \end{bmatrix}$
Example: 2x2 MIMO with Binary Modulation

1. Find linear variable-to-symbol transform T:

\[2q_i - 1 \leftrightarrow v_i \]

(if \(q_i = 1 \)) \(2q_i - 1 = +1 \)

(if \(q_i = 0 \)) \(2q_i - 1 = -1 \)

2. Replace symbol vector \(v \) with transform \(T \) in \(\| y - Hv \|^2 \):

\[
\begin{bmatrix}
q_1 \\
q_2
\end{bmatrix}
\in
\begin{bmatrix}
1 \\
1
\end{bmatrix},
\begin{bmatrix}
1 \\
0
\end{bmatrix},
\begin{bmatrix}
0 \\
0
\end{bmatrix},
\begin{bmatrix}
0 \\
1
\end{bmatrix}
\leftrightarrow
\begin{bmatrix}
2q_1 - 1 \\
2q_2 - 1
\end{bmatrix}
\in
\begin{bmatrix}
+1 \\
+1
\end{bmatrix},
\begin{bmatrix}
+1 \\
-1
\end{bmatrix},
\begin{bmatrix}
-1 \\
-1
\end{bmatrix},
\begin{bmatrix}
-1 \\
+1
\end{bmatrix}
\]

3. Expand the norm \((q^2 = q)\)

\[\hat{q}_1, \hat{q}_2 = \arg \min_{q_1, q_2} f_1(H, y)q_1 + f_2(H, y)q_2 + g_{12}(H)q_1q_2 \]

\[Q = \begin{bmatrix}
f_1(H, y) & g_{12}(H) \\
0 & f_2(H, y)
\end{bmatrix} \]

Symbol Vector: \(v = \begin{bmatrix} v_1 \\ v_2 \end{bmatrix} \)
QuAMax’s linear variable-to-symbol Transform T

BPSK (2 symbols) \(v_i \leftrightarrow 2q_i - 1 \)

QPSK (4 symbols) \(v_i \leftrightarrow 2q_{2i-1} - 1 + j(2q_{2i} - 1) \)

16-QAM (16 symbols) \(v_i \leftrightarrow 3q_{4i-3} - 2q_{4i-2} - 1 + j(3q_{4i-1} - 2q_{4i} - 1) \)

- Coefficient functions \(f(H, y) \) and \(g(H) \) are generalized for different modulations.
- Computation required for ML-to-QUBO reduction is insignificant.
Maximum Likelihood Detection

Quadratic Unconstrained Binary Optimization

Quantum Processing Unit

D-Wave 2000Q (Quantum Annealer)
1. PRIMER: QUBO FORM
2. QUAMAX: SYSTEM DESIGN
3. QUANTUM ANNEALING & EVALUATION
Quantum Annealing (QA) is analog computation (unit: qubit) based on quantum effects, superposition, entanglement, and quantum tunneling.

N qubits can hold information on 2^N states simultaneously. At the end of QA the output is one classic state (probabilistic).
Example QUBO with 4 variables: $-q_1 + 2q_2 + 2q_3 - 2q_4 + 2q_1 q_2 + 4q_1 q_3 - q_2 q_4 - q_3 q_4$

Linear (diagonal) Coefficients: Energy of a single qubit
Quadratic (non-diagonal) Coefficients: Energy of couples of qubits
One run on QuAMax includes multiple QA cycles.
Number of anneals (N_a) is another input.

Solution (state) that has the lowest energy is selected as a final answer.

Evaluation Metric: How Many Anneals Are Required?

Target
Bit Error Rate (BER)

Solution’s Probability
Empirical QA Results
QuAMax’s Empirical QA results

- Run enough number of anneals N_a for statistical significance.
- Sort the $L \leq N_a$ results in order of QUBO energy.
- Obtain the corresponding probabilities and numbers of bit errors.

Example.

![Diagram showing probability and bit errors for different solution ranks]
QuAMax’s Expected Bit Error Rate (BER)

QuAMax’s BER = BER of the lowest energy state after N_a Anneals

$$E(\text{BER}(N_a)) = \sum_{k=1}^{L} \text{Probability of } k\text{-th solution being selected after } N_a \text{ anneals} \times \text{Corresponding BER of } k\text{-th solution}$$

This probability depends on number of anneals N_a

Expected Bit Error Rate (BER) as a Function of Number of Anneals (N_a)
QuAMax’s Comparison Schemes

QA parameters: embedding, anneal time, pause duration, pause location, ...

- **Opt:** run with optimized QA parameters per instance *(oracle)*
- **Fix:** run with fixed QA parameters per classification *(QuAMax)*
QuAMax’s Evaluation Methodology

- **Opt**: run with optimized QA parameters per instance (*oracle*)
- **Fix**: run with fixed QA parameters per classification (*QuAMax*)

Expected Bit Error Rate (BER) as a Function of Number of Anneals (N_α)

![Graph showing BER as a function of number of anneals and time](image)
Time-to-BER for Various Modulations

Lines: Median
Dash Lines: Average
x symbols: Each Instance
QuAMax’s Time-to-BER (10^{-6}) Performance

Practicality of Sphere Decoding

Well Beyond the Borderline of Conventional Computer
QuAMax’s Time-to-BER Performance with Noise

- When user number is fixed, higher TTB is required for lower SNRs.

- Better BER performance than zero-forcing can be achieved.
Practical Considerations

▪ Significant Operation Cost:
 About USD $17,000 per year

▪ Processing Overheads (as of 2019):
 Preprocessing, Read-out Time,
 Programming Time = hundreds of ms

Future Trend of QA Technology

More Qubits (x2), More Flexibility (x2), Low Noise (x25),
Advanced Annealing Schedule, ...
CONTRIBUTIONS

- First application of QA to MIMO detection
- New metrics: BER across anneals & Time-to-BER (TTB)
- New techniques of QA: Anneal Pause & Improved Range
- Comprehensive baseline performance for various scenarios
CONCLUSION

- QA could hold the potential to overcome the computational limits in wireless networks, but technology is still not mature.
- Our work paves the way for quantum hardware and software to contribute to improved performance envelope of MIMO.
Thank you!