Seamless Hardware Accelerated Kubernetes Networking

Mircea M. Iordache-Sica, Tula Kraiser, Olufemi Komolafe

2nd ACM SIGCOMM Workshop on Future of Internet Routing & Addressing (FIRA)
Outline

● Kubernetes Overview

● Hardware Accelerated Kubernetes (HAcK) Architecture & Goals

● HAcK LoadBalancer

● Evaluation & Future Work
Kubernetes Overview (1)

- Kubernetes has become a popular industry standard for deployment of applications and workloads
 - Public Cloud Providers offer managed services
 - On-premises deployments

- Base concepts: Pods and Services
 - Pods -> Containers
 - Services -> Collection of Pods

- IP-per-Pod
 - Traditionally achieved by Software-Defined Network Overlays
 - VXLAN, GRE, Public Cloud implementations
Kubernetes Overview (2)

- Impact on networking
 - Microservice management and orchestration
 - Virtual Network Functions
 - Network emulation

- Leveraging the dataplane too…
 - Offload state storage to the network
Kubernetes Overview (3)

- Kubernetes exposes a powerful paradigm
 - Extensible framework
 - Robust and reliable
 - Industry-proven

- Limitations in State-of-the-Art
 - Networking overlay implemented in software
 - Unification of application and network
 - Network Latency concerns
Hardware Accelerated Kubernetes (HAcK) Objectives

- Intent-driven control and management of application and network
 - User Specifies application and properties
 - Framework configures network

- Expand Software-Defined Networks to hardware
 - Leverage Network ASIC benefits (high bandwidth, low latency)
 - Offloading of Network Functions (e.g., NAT, Load Balancing)

- Avoid (expensive) host packet processing
 - Simplify delivery mechanisms
 - Clear and concise behaviour
HAcK Architecture (1)

- Leverage Kubernetes Event Notification mechanisms to track key state changes
 - CRUD pattern maps well to network automation
 - Controllers and Operators monitor events, make (further) changes

- Example events
 - Pod Create, Update, Delete
 - Service Create, Update, Delete
HAcK Architecture (2) - Examples

- Pod Creation
 - Address Resolution
 - Network Isolation

- Service Creation
 - Route advertisement
 - Address translation
HAcK Architecture (3)

- Configure network elements
 - OpenFlow
 - gNMI
 - SNMP
 - Etc.
Case Study: HAcK Load Balancer (1)

- Use HAcK Architecture to implement Kubernetes Load Balancing behaviour
 - Leverage in-network programmable dataplane for low latency
 - Manage network and container infrastructure simultaneously
 - Route advertisement and network isolation responsibility
 - High-availability networking
Case Study: HAck Load Balancer (2)
Case Study: HAcK Load Balancer (3)

- Network infrastructure
 - Arista 7170 Series
 - Intel Tofino Switch Chip - P4 Dataplane
 - Up to 64 100GbE ports
 - Stateless Load Balancer profile
 - Up to 12.8Tbps throughput, sub μsecond latency
 - Arista EOS API (eAPI) programmability
 - Top-of-Rack deployment
 - Server proximity simplifies packet flow

- Servers
 - MacVLAN networking
 - Multiple (logical) L2 interfaces attached to same NIC
Case Study: HAcK Load Balancer (4)

- HAcK Load Balancer monitors Kubernetes state
 - React to Service and Pod object events
 - Monitor IP assignments
 - External (Advertised)
 - Internal (Private to Kubernetes)
 - Create Match-Action Rules

- Control Networking Appliances (7170)
 - Upload Match-Action Rules in hardware pipeline
 - Maintain connectivity guarantees
Case Study: HAcK Load Balancer (5)

- Arista 7170 Series Stateless Load Balancer (SLB) profile
 - Maintains original packet integrity
 - Prepends L2/L3/VxLAN header with final destination
 - Delivers directly to intended Pod

- On Server
 - Kernel Driver to parse 7170 SLB Headers
 - Pods are aware of the External IP (VIP) via Dummy interface
Deployment of HAcK Load Balancer (1)

- Data Centre environment
 - 3 Linux Servers (master + 2 workers)
 - 2 Arista 7170-32CD-R ToR Switches

- Each Server has Kernel Driver loaded

- Each Pod has MacVLAN network interface
Deployment of HAcK Load Balancer (2)

- Scaling behaviour
 - 32,000 Pods
 - 1,000 Services

- Latency Performance
 - Delivery+wire+ingress
 - TCP Cubic with multiple windows

- Results
 - Sub-millisecond for small (<16kB) windows
 - Server-side congestion for high loads
 - 7170 Retransmissions noticed
 - Servers not optimised for High-performance scenarios
Summary

- Kubernetes opens up many possibilities
 - Improve State-of-the-art Research
 - Simplify workload orchestration
 - Enhance Software-Defined Networking space

- HAcK brings in network infrastructure management
 - Architecture shows serious promise
 - Unify application and network operations
 - Enable Intent-driven networking
 - Simplify operation of end-to-end infrastructure

- HAcK Load Balancer shown as Case Study
 - Deployed in real-world scenario!
 - Use Arista 7170 Series switches for high-performance network workload
Future Work

● Comprehensive evaluation of HAcK Load Balancer
 ○ Kubernetes Event rates
 ○ Switch programmability rates
 ○ Diverse traffic

● Additional HAcK Architecture implementations
 ○ Network isolation
 ○ Service advertisement
 ○ Traffic engineering
Thank You

www.arista.com