
NEAt: Network Error Auto-Correct
Wenxuan Zhou Jason Croft Bingzhe Liu Matthew Caesar

University of Illinois at Urbana-Champaign
{wzhou10, croft1, bingzhe, caesar}@illinois.edu

ABSTRACT
Configuring and maintaining an enterprise network is a chal-
lenging and error-prone process. Administrators must often
consider security policies from a variety of sources simul-
taneously, including regulatory requirements, industry stan-
dards, and to mitigate attack vectors. Erroneous implemen-
tation of a policy, however, can result in costly data breaches
and intrusions. Relying on humans to discover and trou-
bleshoot violations is slow and prone to error, considering
the speed at which new attack vectors propagate and the in-
creasing network dynamics, partly an effect of SDN. To en-
sure the network is always in a state consistent with the de-
sired policies, administrators need frameworks to automati-
cally diagnose and repair violations in real-time.

To address this problem, we present NEAt, a system
analogous to a smartphone’s autocorrect feature that enables
on-the-fly repair to policy-violating updates. NEAt mod-
ifies the forwarding behavior of updates to automatically
repair violations of properties such as reachability, service
chaining, and segmentation. NEAt sits between an SDN
controller and the forwarding devices, and intercepts up-
dates proposed by SDN applications. If an update violates
the policy defined by an administrator, such as reachability
or segmentation, NEAt transforms the update into one that
complies with the policy. Unlike domain-specific languages
or synthesis platforms, NEAt allows enterprise networks
to leverage the advanced functionality of SDN applications
while simultaneously achieving strong, automated enforce-
ment of general policies.

CCS Concepts
•Networks→ Network management;

Keywords
Software-defined networking, auto-correct, real-time

1. INTRODUCTION

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions@acm.org.

SOSR ’17, April 03-04, 2017, Santa Clara, CA, USA
c© 2017 ACM. ISBN 978-1-4503-4947-5/17/04. . . $15.00

DOI: http://dx.doi.org/10.1145/3050220.3050238

Modern enterprise networks must comply with highly
stringent security demands, including regulatory require-
ments, or industry standards, such as PCI, HIPAA, and
SOX. As a result, network administrators must carefully
design and maintain their networks to follow those poli-
cies, by mapping out device contexts and access to sen-
sitive resources, assessing risk, and installing access con-
trol policies that effectively mitigate that risk. However,
mistakes and errors in implementing the policies can result
in costly data breaches, segmentation violations, and infil-
trations. Through 2020, Gartner predicts 99% of firewall
breaches will be caused by misconfigurations [1, 2].

While discovering and troubleshooting these bugs is es-
sential to maintaining network security, doing so is notori-
ously hard. Relying on humans to configure and maintain
the network configuration is not only prone to mistakes, but
slow. Given the sophistication and speed at which new attack
vectors propagate, manually updating and testing new con-
figurations leaves the network in a vulnerable state until the
attack vector is fully secured. Further, maintaining a secu-
rity posture in the presence of software-defined networking
(SDN) is even more challenging. While SDN enables new
functionality, application designers may not be aware of the
policy or security requirements of the networks on which
their applications will be deployed. Worse yet, SDN appli-
cations written in general-purpose languages such as Java or
Python can be arbitrarily complex. Requiring applications
to implement and modify their behavior to support a broad
spectrum of policies needed across a broad spectrum of net-
works presents an almost insurmountable challenge.

To this end, we present NEAt, a transparent layer to
automatically repair policy-violating updates in real-time.
NEAt secures the network with a mechanism similar to a
smartphone’s autocorrect feature, which enables on-the-fly
repair to policy violating updates and ensures the network is
always in a state consistent with policy. Unlike prior work on
update synthesis, NEAt maintains backward compatibility
and flexibility to run general SDN application code. To do
this, NEAt does not synthesize network state from scratch,
but rather influences updates from an existing SDN appli-
cation toward a correct specification. In particular, NEAt
enforces a concrete definition of correctness by influencing
and constraining dynamically arriving network instructions,
in order to obey a set of specified correctness criteria. To for-
mulate those correctness criteria, we construct a set of pol-
icy graphs to represent humans’ correctness intent, which is
based on the observation that important errors can be caught
by a concise set of boundary conditions. NEAt sits be-

tween an SDN controller and the forwarding devices, and
intercepts the updates proposed by the running SDN appli-
cations. If the update violates an administrator’s defined pol-
icy, such as reachability or segmentation, NEAt transforms
the update into one that complies with the policy.

A key challenge we face in this approach is discovering
update repairs in real-time. In NEAt, we build on prior
work on verification to efficiently model packet forward-
ing behavior as a set of Equivalence Classes (ECs) [13, 22].
Upon receiving an update from an SDN controller, NEAt
computes the set of affected ECs and checks for a violation
in the same manner as [13]. To repair the violation, we cast
the problem as an optimization problem, to find the mini-
mum number of changes (added or deleted edges) to repair
the violating EC’s forwarding graph. To rapidly compute
repairs on arbitrarily large networks, we propose a cluster-
ing algorithm to compress both an EC’s forwarding graph
and the topology, then solve the optimization problem on
the compressed graphs.

A preliminary evaluation of our prototype shows promis-
ing results. On topologies with up to 125 switches and 250
hosts, NEAt can discover repairs in under one second for
applications with non-overlapping rules, and under two sec-
onds for applications with more complex dependencies.

2. MOTIVATION AND DESIGN

NEAt

Stream of Updates

Optimization Engine

Network
Events

Controller

Optimizer
Yes

No
CompressorVerification

Engine

Network Model

Policy

Figure 1: System architecture of NEAt.

A system to automatically repair updates, ensuring the
network always remains consistent with an administrator’s
policy, can relieve a slow and error-prone process from the
configuration process. If an update violates a given property
in the network, a repair should fix the cause of the violation
while maintaining the original purpose of the update. We ar-
gue a minimal change is best, to repair the update with the
least number of added or removed edges. Furthermore, such
a system should improve upon a manual effort with trans-
parency in both architecture and performance. A system that
requires hours or days to verify and repair a network is not
useful if the process can be completed manually in just a
few minutes. It should also not require modifying existing
applications or redesigning infrastructure.

However, accomplishing this task in real-time is challeng-
ing due to the size of the network and the data plane state.
To efficiently reason about the data plane, we build on previ-
ous work in verification [13, 22] that separates the forward-
ing behavior into Equivalence Classes (ECs) of packets. All
packets within an EC are forwarded in precisely the same

manner. From each EC, we can extract a configuration graph
that defines the forwarding behavior for packets within the
EC. A repair for a given EC must then explore additions or
deletions of links in the configuration graph. Finding a link
addition requires examining the topology graph defined by
the edges in the physical topology. To efficiently discover
repairs, we propose a clustering algorithm to compress the
configuration and topology graphs, described in §3. We re-
fer to these as the compressed configuration graph and com-
pressed topology graph.

Figure 1 shows the overall design ofNEAt. NEAt takes
as input a policy graph, which defines the network policies
(e.g., reachability, segmentation, waypointing) in the form
of a directed graph. NEAt sits between the controller and
forwarding devices, receiving updates from the controller, as
well as updates from the network about link and switch state.
With each update, NEAt applies the change to a network
model, from which the ECs affected by the update are com-
puted. Using the policy graph, NEAt checks each affected
EC in the network model for policy violations. If the update
does not introduce any violations, it is sent onto the network.
However, if it does introduce a violation, the configuration
graph and topology graph are compressed and passed to the
optimizer. The optimizer returns a set of edges to be added
or removed to the EC’s configuration graph, which are then
applied to the network model, converted to OpenFlow rules,
and sent to the forwarding devices.
NEAt’s optimizer models the process of discovering re-

pairs as an optimization problem. Our exploration of alterna-
tive approaches guided us toward this optimization problem-
based solution for performance considerations. For example,
consider a brute force approach that discovers repairs for a
given EC by testing all possible permutations of edge addi-
tions and removals to the EC’s configuration graph. A repair
that requires only adding edges, from 10 possible unused
topology edges, would need to explore 10! (~3.6M) per-
mutations. If the violating property can be checked in just
1ms, each EC could take up to 10 minutes to find a repair.
vfeTherefore we use the formulation described in §3 for our
optimization engine.

3. ALGORITHM
We now present the core algorithm in NEAt to repair vi-

olations in real-time. First, we introduce the network model
and give an overview of the algorithm. Next, we describe
our technique to compress the model without losing policy-
relevant information. We then formulate the repair problem
as an integer linear programming (ILP) problem that can be
solved heuristically in real-time.

Network model As described in §2, upon intercepting an
update, NEAt constructs a configuration graph `c for each
affected EC c, which captures the configured forwarding be-
havior for all packets in the EC c. If a violation is detected
in the model, we repair it with the help of two additional
graphs: a topology graph T and a policy graph ℘, both of
which are shared across ECs. Each node in these graphs
represents a physical device or a type of device, e.g., fire-
wall, and each edge between a pair of nodes defines reacha-

bility between them. The policy graph ℘ is a directed graph
constructed from a set of conflict-free policies that repre-
sents the expected behavior of the whole network and hence
should not be violated at runtime. Figure 2 expresses a sim-
ple policy: host h should go through a firewall FW before
reaching the server S. A policy’s conflict freedom can be
guaranteed by tools like PGA [16], which is out of the scope
of this paper. A topology graph T is an undirected graph that
represents the physical topology of the network.

Figure 2: A simple policy graph: host h should go through a
firewall FW before reaching the server S.

Algorithm overview When the verification engine discov-
ers a violating EC, the algorithm is executed. Its goal is to
repair the detected violations optimally, i.e., with the mini-
mum number of changes to the original configuration. Upon
receiving the violating EC c together with its configuration
graph `c, NEAt formulates the problem as an optimization
problem: we aim to add or delete the minimum number of
edges on `c so that the modified `c complies with ℘c. ℘c

is a subgraph of ℘ that is relevant to EC c. Note that the
added or deleted edges are constrained within the topology
graph T . In addition, to address the challenge of scalability,
the graphs are compressed using our clustering algorithm be-
fore passing them to the optimizer. After the optimizer finds
the optimal changes on the compressed graph, we map the
changes back to the original graphs.

3.1 Clustering
We develop a clustering algorithm to improve scalability

on arbitrarily large networks. Intuitively, the algorithm com-
pacts configuration graphs and topology graphs into clusters
around policy nodes, in a way that the resulting graphs have
the same reachability properties as the original graphs with
respect to nodes concerned in the policy.

For each EC c, we compress the configuration graph and
the topology graph through the following three steps:

i) Compute clusters on configuration graph around
policy nodes. For each policy node i, on configu-
ration graph `c we perform a forward and backward
breadth-first search to find node i’s cluster forward tree
zc

i and backward tree Bc
i , respectively. Figure 3(b) il-

lustrates the backward and forwarding tree for configu-
ration graph `c. Node i’s cluster Cc

i is the union of zc
i

and Bc
i . One node can belong to multiple clusters. Af-

ter computing all the policy nodes, we cluster the rest
of the nodes by computing zc

i and Bc
i for each node i.

ii) Compute clusters on topology graph. As the config-
uration graph can be considered as a subgraph of the
topology graph, we cluster the topology graph T based
on the clusters Cc of the configuration graph. For the
node that do not exist in `c, it becomes a cluster of
itself, in order to give the maximum number of free
nodes for the optimizer.

iii) Compute compressed configuration and topology
graph. Let ci denote the node i in the compressed
graph for the cluster Cc

i . Any pair of nodes cu, cv is
connected on compressed topology graph T cp, if there
exists an edge between any node in Cc

u and any node
in Cc

v . Any pair of nodes cu, cv is connected with
a directed edge (cu, cv) on compressed configuration
graph `cp, if there exists an edge between any node in
zc

u and any node in Bc
v .

Figure 3(b) and 3(c) illustrate the clustering of a configu-
ration graph `c and a topology graph T based on the policy
graph ℘ in 3(a). Note that the rectangular nodes represent
policy nodes. In Figure 3(b), `c is clustered around the pol-
icy nodes i, j andm. As zc

i andBc
j have overlapping nodes,

an edge (ci, cj) is added to `cpc . In Figure 3(c), as node q
and r can not be reached by or reach any policy node, they
are not compressed into any policy node cluster and hence
become two separate compressed nodes in T cp. Five undi-
rected edges (ci, cj), (cm, cq), (cq, cj), (cm, cr) and (cr, cq)
are added into T cp based on physical connectivity.

3.2 Optimization
After receiving `cpc and T cp from the clustering phase,

the optimizer determines the minimum number of edges that
need to be added or deleted to make `cpc consistent with ℘c

using ILP.
Our integer program has a set of binary decision variables

xi,j,p,q and xi,j that

xi,j,p,q, (i, j) ∈ ET cp , (p, q) ∈ E℘c (1)

xi,j , (i, j) ∈ ET cp (2)

ET cp and E℘c denote the set of edges in T cp and ℘c respec-
tively. xi,j,p,q defines the mappings between the edges in
T cp and the edges in ℘c. It is 1 if a directed edge (i, j) is
mapped to a policy edge (p, q) for the current EC c. xi,j
defines the edges in the resulting configuration graph. It is
1 if a topology edge (i, j) is selected for the new configura-
tion. These variables are required to satisfy the constraints
in Equation 3-12.

For any physical link (i, j) in T cp and policy link (p, q)
in ℘c, let E(a) represent the set of all the edges of graph a,
let N(E(a)) represent the number of all edges of graph a,
and let NBa(i) represent the set of all the neighbor nodes of
node i in graph a.

∀(i, j) xi,j ≤
∑

(p,q)∈E℘c

xi,j,p,q (3)

∀(i, j) xi,j ≥
∑

(p,q)∈E℘c

xi,j,p,q
N(E℘c)

(4)

∀(j, i) xj,i ≤
∑

(p,q)∈E℘c

xj,i,p,q (5)

∀(j, i) xj,i ≥
∑

(p,q)∈E℘c

xj,i,p,q
N(E℘c)

(6)

∀(j, i) xi,j + xj,i ≤ 1 (7)

(a) Policy graph. Node i and m should be able to reach node j. Note
that rectangular nodes represent policy nodes.

(b) Original and compressed configuration graphs. The reachability between
m and j is violated on both graphs. The clusters are constructed around

policy nodes i, j and m. Cc
i = {i, a, b, c, d, e, f, g},

Cc
j = {j, d, f, e, g, h, k}, Cc

m = {m, p}.

(c) Original and compressed topology graphs. There are two extra clusters
compared with those in (b): Cc

r = {r}, Cc
q = {q}.

(d) Map back phase. Suppose the minimal change returned from
optimization is the addition of edge (cm, cq) and (cq , cj), then after
mapping the changes back, edge (p, q), (q, j) will be inserted to `c.

Figure 3: NEAt algorithm
Equation 3 and 4 define the relationship between xi,j and

xi,j,p,q . They assert that any edge (i, j) in T cp is selected
iff (i, j) is mapped to at least one (p, q) in policy graph,
otherwise it should not be selected. Similarly, for link (j, i),
we have Equation 5 and 6. Equation 7 prevents self loops.

∀i ∈ T cp
∑

j∈NBTcp (i)

xi,j ≤ 1 (8)

Currently we assume unicast forwarding (Equation 8).

∀(p, q),∀i ∈ T cp:{∑
j∈NBTcp (i) xi,j,p,q = 1∑
j∈NBTcp (i) xj,i,p,q = 0

if i = p (9)

{∑
j∈NBTcp (i) xi,j,p,q = 0∑
j∈NBTcp (i) xj,i,p,q = 1

if i = q (10)

{∑
j∈NBTcp (i) xi,j,p,q = 0∑
j∈NBTcp (i) xj,i,p,q = 0

if i ∈ ℘c and (∃ρi,por ∃ρq,i)

(11)

{∑
j∈NBTcp (i)(xi,j,p,q − xj,i,p,q) = 0 otherwise

(12)
Equations 9-12 are the flow conservation equations for pol-
icy level reachability (p, q). ρi,p denotes the paths between i
and p. Note that Equation 11 goes beyond individual reach-
ability requirement in the policy, but also takes into account
dependencies between policy edges. The resulting map-
ping is guaranteed to satisfy chaining of reachability require-
ments. For instance, if a policy node i is required to reach q
through p, because of this equation, i cannot be mapped to
the path segment (p, q). Otherwise, p might be skipped on
the path from i to q.

The optimization objective is to minimize the number of
changes on the original configuration graph `c.

min
∑

(i,j)/∈E`c

xi,j (13)

In Figure 3(a), the policy graph specifies that node m
should reach j. This property is violated in the configuration
graph `c in Figure 3(b). Figure 3(d) shows the optimiza-
tion result on the compressed graph that two directed edges
(cm, cq), (cq, cj) need to be added to repair the reachability
violation between m and j. The node cr is not chosen as it
needs to add three edges (cm, cr), (cr, cq), (cq, cj) to repair
the violation.

3.3 Map Back
The last step is to map the result to the original configu-

ration graphs `c. The optimization result is a set of changes
that consist of a set of added or deleted edges on `cpc . While
mapping back, an edge (ci, cj) becomes a path between the
cluster Cc

i and Cc
j . If an edge (ci, cj) is added to `cpc , all

edges along the shortest path P ∈ ρCc
i ,C

c
j

in T should be
added into `c. If an edge (ci, cj) should be removed from
`cpc , any path P ∈ ρCc

i ,C
c
j

in `c needs to be removed.
Figure 3(d) illustrates the map back phase. As described

in §3.2, the optimization result consists of two added edge:
(cm, cq) and (cq, cj). In Figure 3(c), we can see that in T
the shortest path between cm and cq is (p, q), and between
cq and cj is (q, j). The path {(p, r), (r, q)} should not be
chosen for (cm, cq) as it is not the shortest path between the
two clusters. The two dotted arrows (p, q) and (q, j) in 3(d)
illustrate the edges that need to be added into `c.

Afterward, these computed changes will be translated into
SDN instructions, and sent to the network devices.

4. EVALUATION
We implemented a prototype of NEAt in Python. The

verification engine is based on our prior work [13] and we
use the Gurobi Optimizer [3] within our optimization engine
to solve the ILP.

To evaluate the feasibility and scalability of NEAt, we
synthesized a set of fat-tree topologies with various sizes,
and used NEAt to maintain reachability and segmentation
policies. More specifically, on each topology, under random

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1

seconds

with clustering
w/o clustering

(a) 16 hosts, 20 switches

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1

seconds

with clustering
w/o clustering

(b) 54 hosts, 45 switches

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1

seconds

with clustering
w/o clustering

(c) 128 hosts, 80 switches

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.1 1

seconds

with clustering
w/o clustering

(d) 240 hosts, 125 switches

Figure 4: Repair time comparison under random removals of exactly matching rules

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.001 0.01 0.1

seconds

with clustering
w/o clustering

(a) 16 hosts, 20 switches

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1

seconds

with clustering
w/o clustering

(b) 54 hosts, 45 switches

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1

seconds

with clustering
w/o clustering

(c) 128 hosts, 80 switches

 0

 0.2

 0.4

 0.6

 0.8

 1

 0.01 0.1 1 10

seconds

with clustering
w/o clustering

(d) 240 hosts, 125 switches

Figure 5: Repair time comparison under random removals of overlapping rules

removals of rules, we measured the repair time for each re-
moval that caused a violation.

4.1 Exact matching rules
We first focus on flow-based traffic management applica-

tions widely used in SDN [5, 8, 10, 11, 12]. Any forwarding
rule produced by such applications at a switch matches at
most one flow. In our terms, each rule only affects at most
one EC. Suppose the desired policy is that every pair of hosts
should be able to reach each other, which we will refer to as
an all-pair reachability policy. With random removals of
rules, for those removals resulting in violations to all-pair
reachability, the optimization engine is triggered to perform
the repair. For testing purposes, we re-check the policy af-
ter each repair, and the check passed for all cases. Figure 4
compares the CDFs of the repair time (including clustering
and map-back time, when using clustering) with and without
clustering over rule removals under various topology sizes.
We can see the repair time is bounded under one second, and
clustering brings constant speed-up to optimization.

4.2 Overlapping rules
For networks that use wild-carded rules or longest prefix

matching, the assumption in the previous subsection does
not hold. One rule may affect multiple ECs, and thus poten-
tially trigger repairs on multiple graphs. Fortunately, there
is a trend to move such overlapping rules to network edge or
even hosts [4, 6, 14], leaving the core with exactly matching
rules. In order to study how NEAt performs under this less
preferable but less common scenario, we assign IP addresses
within the same prefix subnet to hosts within the same pod
on the fat-tree topologies. We then compress rules on the
switches as much as possible. For example, each core switch
has only k forwarding rules, where k is the number of pods,
and each rule matches on one pod’s prefix. Similar to the
previous experiments, we used NEAt to guarantee an all-
pair reachability policy, and our engine discovered repairs
for all violations. Figure 5 again compares the CDFs of the
repair time with and without clustering triggered. The repair

took longer compared to applications with exact match rules
because of the increased number of affected ECs. With our
clustering technique, optimization is able to finish under two
seconds in the worst case.

4.3 Segmentation policy
Lastly, we tested how NEAt handles a mix of reachabil-

ity and segmentation policies. For each fat-tree topology,
we randomly selected a pair of pods whose hosts should
be isolated from each other. In addition, any other pair of
pods should have bi-directional reachability. Every repaired
configuration was checked against the policy and passed the
check, with speed comparable to previous subsections. Note
that unlike the previous pure reachability policy, where re-
pairs are all edge additions, in this case, a repair is some-
times a mix of edge additions and deletions. As verified by
the re-checks, changes for fixing different types of policies
keep other policy intact.

5. RELATED WORK
SDN programming languages: Many programming lan-
guages have been proposed to provide abstractions to pro-
gram SDNs, e.g., Frenetic [7], Pyretic [17] and Maple [21].
These allow programmers to compose complex rules with-
out the need to manually resolve conflicts between rules.
However, these languages face limitations implementing
general policies that deliver higher-level intent, such as ex-
pressing middleware functionality or QoS constraints.

SDN synthesis platforms: Network state can also be syn-
thesized from a set of pre-specified correctness conditions.
NetGen [19], for example, takes as input a specification us-
ing regular expressions to define paths changes and a set
of ECs to modify. It uses an SMT solver to find the min-
imal number of changes. However, similar to Merlin [20]
and FatTire [18], this tool is designed to be used as com-
piler, with performance that is too slow for real-time appli-
cations (i.e., minute-scale synthesis). While using NetGen
in place of our ILP is possible, doing so would addition-
ally require translating each update into an equivalent Net-

Gen specification. Similarly, Marham [9] proposes a frame-
work for automated repair, but with slower performance —
on the order of several seconds for topologies 10s of nodes
and links. Margrave [15] analyzes changes to access control
policy changes, highlighting to an operator the effect it has
on the policy, without suggesting repairs to violtions.

6. DISCUSSION AND FUTURE WORK
With this proposed technique, we are facing the following

five key challenges that lead to corresponding future work.

Theoretic Proof The design of NEAt is centered on the
key word "correctness". A natural question is how NEAt
ensures correctness. Intuitively, the network changes output
by NEAt should always be correct with regard to the de-
sired policies in the network, because the repair procedure
is actually modifying network updates to make the new for-
warding graph comply with the policy graph, i.e., the policy
graph can be mapped to the forwarding graph. However, as
the repair procedure involves solving an optimization prob-
lem, which is not guaranteed to be feasible in every case,
without a safe fall-back plan we cannot ensure NEAt is al-
ways correct. Moreover, even with a feasible solution, the
solution may not be the best, in our terms with the minimum
number of changes, due to the relaxation on the ILP problem
made by our chosen solver. In addition, the repair effort uses
a minimal number of edits as the optimization goal. In prac-
tice, there may be other goals, for example, minimizing the
amount of traffic shifts, etc. We plan to carefully consider all
these factors, and prove, both theoretically and empirically,
how accurate NEAt’s solution is under different scenarios,
and under what types of scenarios NEAt is applicable.

Interaction with Applications Upon detecting a violation,
NEAt has two options: allowing the network operator to re-
view one (or more possible) repairs before it is applied to the
network, or automatically fixing it. NEAt proposes remov-
ing the human element as much as possible. The first case is
against our decision and reintroduces the possibility of hu-
man error. Furthermore, as networks become more dynamic
(e.g., an SDN traffic engineering application that issues up-
dates with each new flow), repairs requiring manual review
may arrive faster than an operator can process them. In the
second case, however, fixes are applied silently, without in-
forming upper-layer applications and operators. Consider a
load balancer application, which balances traffic across the
network by tracking current load and routes in the network.
If NEAt directly fixes a violation, the state in the applica-
tion will become inconsistent from the network state.

As a result, we plan to deploy NEAt with two modes. In
the first, NEAt acts as a transparent layer between an SDN
controller and network devices, automatically repairing vio-
lations without operator intervention. Essentially, NEAt is
equivalent to an application that overrides all other applica-
tions. We argue this is best suited for stateless applications.
Alternatively, NEAt can be integrated within SDN applica-
tions as a library. Here, NEAt can be used by applications
to process queries that include proposed updates by the ap-
plication, and application-level intentions. The results of the

query include whether or not the updates violate any network
policies, and if so, what is the modified set of updates. Note
that the modified updates should be computed in a way that
take into account the application intention.

There are clear trade-offs between the two modes. The
first directly takes advantage of our prior work on data plane
verification, but will cause network states to diverge from ap-
plication views. The second one retains consistency between
network state and application views, but loses the ability to
analyze the network in an unified way. We plan to test these
two approaches with real network traces and applications.

Generality and Expressiveness of Correctness Policies
Currently, we focus on network policies that fall into trace
properties which we studied in [22]. Such properties char-
acterize the paths that packets traverse through the network.
Fortunately, this covers many common network properties,
including reachability, access control, loop freedom, and
waypointing. In addition, as such properties are path-based,
composing them into a policy graph is relatively straightfor-
ward. However, there are other network operational goals,
for example, ensuring shortest paths or at lease k link dis-
joint paths between given devices. To address that, we
will first extend NEAt with extensive APIs to code general
reachability policies with. Next, we will investigate tech-
niques to compose such a broader range of policies, and then
incorporate those policies into our optimization procedure.

Performance Optimization In our optimization formula-
tion, the number of variables for one EC is approximately
the product of the number of edges in the physical topol-
ogy and the number of edges of the policy graph. This can
easily exceed 100k. Therefore, we need a more scalable
formulation. To this end, we are currently studying policy-
preserving graph compression algorithms, to reduce the size
of the optimization problem. We are also exploring opti-
mization techniques to speed up NEAt.

Evaluation using Realistic Network Data Plane Traces
and Applications Future work will build NEAt into a
fully-featured SDN data plane autocorrect platform. We will
testNEAtwith real-world data traces and SDN applications
to validate this approach. We expect the investigation will
bring us insights on how to improve the design.

7. CONCLUSION
In this paper we presented NEAt, a system that provides

network administrators with a network analogue of a smart-
phone’s autocorrect. As a transparent layer, NEAt repairs,
in real-time, updates from an SDN controller that violate
generic policies such as reachability, service-chaining, and
segmentation. NEAt repairs the updates by adding or re-
moving a minimal number of rules in order to comply with
the policy by casting the problem as an optimization prob-
lem. Preliminary experiments on large fat-tree topologies
show our optimization problem-based formulation can dis-
cover repairs in under one second for applications with non-
overlapping rules, and two seconds for applications issuing
rules with more complex dependencies.

References
[1] http://www.infosecurity-magazine.com/opinions/to-

err-is-human-to-automate-divine/.

[2] http://www.verizonenterprise.com/verizon-insights-
lab/dbir/2016/.

[3] Gurobi optimization. http://www.gurobi.com/.

[4] Network virtualization for cloud data centers.
http://tinyurl.com/c9jbkuu.

[5] T. Benson, A. Anand, A. Akella, and M. Zhang. Mi-
crote: Fine grained traffic engineering for data cen-
ters. In Proceedings of the Seventh Conference on
Emerging Networking Experiments and Technologies-
periments and Technologiesnference on emerging Net-
working EXperiments and Technologies (CoNEXT),
page 8. ACM, 2011.

[6] B.Raghavan, M.Casado, T.Koponen, S.Ratnasamy, and
a. S. S. A.Ghodsi. Software-defined Internet architec-
ture: Decoupling architecture from infrastructure. In
HotNets, 2012.

[7] N. Foster, R. Harrison, M. J. Freedman, C. Monsanto,
J. Rexford, A. Story, and D. Walker. Frenetic: A net-
work programming language. In ICFP, 2011.

[8] B. Heller, S. Seetharaman, P. Mahadevan, Y. Yiak-
oumis, P. Sharma, S. Banerjee, and N. McKeown. Elas-
ticTree: Saving energy in data center networks. In
NSDI, 2010.

[9] H. Hojjat, P. Reummer, J. McClurgh, P. Cerny, and
N. Foster. Optimizing horn solvers for network repair.
In FMCAD, 2016.

[10] C.-Y. Hong, S. Kandula, R. Mahajan, M. Zhang,
V. Gill, M. Nanduri, and R. Wattenhofer. Achieving
high utilization with software-driven wan. In SIG-
COMM, 2013.

[11] S. Jain, A. Kumar, S. Mandal, J. Ong, L. Poutievski,
A. Singh, S. Venkata, J. Wanderer, J. Zhou, M. Zhu,
J. Zolla, U. HoÌĹlzle, S. Stuart, and A. Vahdat. B4:

Experience with a globally-deployed software defined
wan. In SIGCOMM, 2013.

[12] X. Jin, R. Mahajan, H. H. Liu, R. Gandhi, S. Kandula,
M. Zhang, J. Rexford, and R. Wattenhofer. Dynamic
scheduling of network updates. In SIGCOMM, 2014.

[13] A. Khurshid, X. Zou, W. Zhou, M. Caesar, and P. B.
Godfrey. VeriFlow: Verifying network-wide invariants
in real time. In NSDI, 2013.

[14] M.Casado, T.Koponen, S.Shenker, and
A.Tootoonchian. Fabric: A retrospective on evolving
sdn. In HotSDN, 2012.

[15] T. Nelson, C. Barratt, D. J. Dougherty, K. Fisler, and
S. Krishnamurthi. The margrave tool for firewall anal-
ysis. In LISA, 2010.

[16] C. Prakash, J. Lee, Y. Turner, J.-M. Kang, A. Akella,
S. Banerjee, C. Clark, Y. Ma, P. Sharma, and Y. Zhang.
PGA: Using graphs to express and automatically rec-
oncile network policies. In SIGCOMM, 2015.

[17] J. Reich, C. Monsanto, N. Foster, J. Rexford, and
D. Walker. Modular sdn programming with pyretic.
In USENIX ;login, 38(5), pages 40–47, October 2013.

[18] M. Reitblatt, M. Canini, A. Guha, and N. Foster. Fat-
tire: Declarative fault tolerance for software-defined
networks. In HotSDN, 2013.

[19] S. Saha, S. Prabhu, and P. Madhusudan. NetGen: Syn-
thesizing data-plane configurations for network poli-
cies. In SOSR, 2015.

[20] R. Soule, S. Basu, P. J. Marandi, F. Pedone, R. Klein-
berg, E. G. Sirer, and N. Foster. Merlin: A language
for provisioning network resources. In CoNEXT, 2014.

[21] A. Voellmy, J. Wang, Y. R. Yang, B. Ford, and P. Hu-
dak. Maple: Simplifying sdn programming using algo-
rithmic policies. In SIGCOMM, 2013.

[22] W. Zhou, D. Jin, J. Croft, M. Caesar, and P. B. God-
frey. Enforcing customizable consistency properties in
software-defined networks. In NSDI, 2015.

