Piggybacking Network Functions on SDN Reactive
Routing: A Feasibility Study

Chang Liu", Arun Raghuramu”, Chen-Nee Chuah”, and Balachander Krishnamurthy ™™

“University of California, Davis; **AT&T Labs-Research

ABSTRACT

This paper explores the potential of enabling SDN secu-
rity and monitoring services by piggybacking on SDN
reactive routing. As a case study, we implement and
evaluate a piggybacking based intrusion prevention sys-
tem called SDN-Defense. Our study of university WiFi
traffic traces reveals that up to 73% of malicious flows
can be detected by inspecting just the first three packets
of a flow, and 90% of malicious flows from the first four
packets. Using such empirical insights, we propose to
forward the first K packets of each new flow to an aug-
mented SDN controller for security inspection, where K
is a dynamically configurable parameter. We character-
ize the cost-benefit trade-offs of SDN-Defense using real
wireless traces and discuss potential scalability issues.
Finally, we discuss other applications which can be en-
hanced by using our proposed piggybacking approach.

CCS Concepts

eNetworks — Network security;

Keywords
SDN; Network Security

1. INTRODUCTION

Software-defined networking (SDN) is widely consid-
ered to be the networking architecture of choice for fu-
ture networks. The SDN controller has a global view of
the network and can dynamically configure the forward-
ing rules in managed SDN switches. Network function
virtualization (NFV) is another technology trend that

Permission to make digital or hard copies of all or part of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for components of this work
owned by others than ACM must be honored. Abstracting with credit is per-
mitted. To copy otherwise, or republish, to post on servers or to redistribute to
lists, requires prior specific permission and/or a fee. Request permissions from
permissions @acm.org.

SOSR 17, April 3-4, 2017, Santa Clara, CA, USA
© 2017 ACM. ISBN 978-1-4503-4947-5/17/04. .. $15.00
DOL: http://dx.doi.org/10.1145/3050220.3050225

is complementary to SDN, allowing network functions
to run as virtual machines or containers running on the
same physical hardware, e.g. a blade server.

One common operational mode of SDNs is reactive
routing where the first few! packets of a flow will be
forwarded to the SDN controller to determine which
actions should be taken before the associated forward-
ing rules are installed in the SDN switch/router. This
is useful for networks where logical topology is contin-
uously evolving based on traffic statistics and policies.
There is a unique, untapped opportunity here given that
the SDN controller has a global view and can potentially
inspect first K packets of each flow, where K can be a
configurable parameter.

In this paper, we explore the potential of support-
ing new network services by piggybacking network func-
tions on SDN reactive routing. For instance, inspecting
the first few packets seen through reactive routing can
be critical for early intrusion detection, or for classify-
ing packets belonging to specific service types for QoS
provisioning and accounting. As a concrete example,
we provide an in-depth feasibility study of offloading
signature-based intrusion prevention to the SDN con-
troller by piggybacking on reactive routing- an approach
referred to as SDN-Defense. Some potential benefits of
SDN-Defense include: 1) earlier/faster detection and
mitigation, i.e., if a malicious flow is detected at the
SDN controller, it can install appropriate rules at all the
switches to block such future traffic, 2) relieving load
on traditional intrusion detection/prevention systems
(IDS/IPS), and 3) more comprehensive coverage with
global view of SDN controller, hence detecting threats
not seen by traditional IDS/IPS middleboxes that only
inspect traffic from local links they monitor at the net-
work edge. Our contributions are threefold:

e We analyzed 296GB of WiFi traffic from a large
US-based university campus and demonstrated that
73% of the malicious flows can be detected by just
inspecting the first three packets of a flow, and 90%

'For a TCP connection, only the first packet is for-
warded, whereas for a UDP connection, the first few
packets arriving at the switch without routing informa-
tion get forwarded.

of malicious flows from the first four packets.

e We propose, implement, and evaluate SDN-Defense,
where SDN reactive routing is augmented with Snort
rules to perform first K-packet inspection. We char-
acterize the cost-benefit trade-offs of SDN-Defense
using real WiFi traffic traces.

e We discuss other SDN services such as application
identification and dynamic Traffic Dispersion Graph
(TDG) generation, which can be enhanced with our
proposed piggybacking approach.

We will discuss related work next (Section 2), fol-
lowed by an overview of our framework (Section 3). Sec-
tion 4 presents the cost-benefit analysis of SDN-Defense.
Section 5.1 discusses controller scalability and Section
5.2 describes other potential piggybacking-based appli-
cations. We conclude the paper in Section 6.

2. RELATED WORK

2.1 Network intrusion detection

There is a large body of prior studies on network in-
trusion detection. Liao et al. [10] offer a comprehensive
review of existing intrusion detection methodologies and
systems. In this work, we utilized Snort [5], a widely
deployed, open-source, signature based IDS to demon-
strate our proposed offloading framework.

Papadogiannakis et al. [15], propose selective packet
discarding — a best-effort approach which enables a
NIDS to anticipate overload conditions and minimize
the impact on attack detection. Instead of letting the

packet capturing subsystem randomly drop arriving pack-

ets in case of overload, the authors propose to discard
packets that are less likely to affect detection accuracy
and focus on the traffic at the early stages of network
flows. Unlike our work, the system proposed in [15] is
for a traditional (non-SDN) network setting. Their so-
lution faces all the limitations of an IDS operating in
the traditional network, e.g. the IDS only sees traffic
from local links. Furthermore, our proposed framework
is general and can enhance other applications such as
application classification as we will discuss in Section 5.

2.2 Intrusion detection in SDN

We now describe some attempts in the past focusing
on implementing network intrusion detection systems in
SDN. Syed et al. [14] propose that SDN can be used
to effectively detect and contain network anomalies in
home and home office networks. Giotis et al. [8] propose
combining OpenFlow and sFlow to implement anomaly
detection and mitigation in general SDN environments.
Unlike these works which implement an anomaly based
intrusion detection system, our case study involves run-

ning a signature-based detector (Snort) on the controller.

Another important distinction is that both [14] and [8]
utilize a limited and narrow set of synthetically gen-
erated attack traffic (e.g. port scan, DoS) to evaluate
their system whereas we perform detailed analysis by

utilizing real-world malicious traffic containing 44 dis-
tinct threat types seen in a university campus trace.

Yoon et al. [12] analyze the feasibility of implement-
ing various SDN-based security functions. They im-
plement the signature based NIPS/NIDS function on
a popular SDN platform. Their proposed approach is
based on reactive routing. In their system, the first
packet of a new flow is sent to the controller and is
then passed to NIPS/NIDS. NIPS/NIDS determines if
the flow should go through packet inspection process
and based on the decision, different forwarding rules
are installed for the flow. However, there is no detailed
trace-based evaluation of their proposed approach. In
fact, our studies using real network traces demonstrate
that inspecting just the first packet is often insufficient
in determining if a flow is malicious or not.

An architecture for integrating Snort IDS with SDN
for cloud environments is discussed in [11]. Specifically,
they utilize XenServer and run Snort checks on VM
generated traffic in the hypervisor management domain.
The SDN controller then interprets the alerts generated
by Snort and controls an OVS switch to take dynamic
routing decisions. Unlike [11], the framework presented
in this paper is more general and not tied to a particular
deployment scenario. The piggybacking mechanism we
present can also be easily extended to perform other
network monitoring functions. Finally, the evaluation
performed in their work is incomplete from a security
perspective since they, like earlier work, only utilize a
narrow set of synthetic traffic.

3. CASESTUDY: PIGGYBACKING IDS/IPS

ON SDN REACTIVE ROUTING

In this section, we describe the idea of piggybacking
IDS/IPS functions on SDN reactive routing and study
its benefit and cost. There is a broad design space for
incorporating these functions in SDN networks. At one
end of the spectrum is the base case where SDN con-
troller /switches are not involved and IDS/IPS middle-
boxes operate in the traditional way: only processing
traffic from local links they monitor. On the other end
of the spectrum, the complete IPS functions are running
as applications within SDN controller. Alternately, IPS
can be introduced as a VNF (Virtual Network Function)
and co-located with the controller. Clearly, forwarding
all traffic to the controller for inspection will incur sig-
nificant overhead. Our goal is to explore the sweet spot
in between by piggybacking on SDN reactive routing.

3.1 System Overview

In reactive routing mode, the first packet of a new
flow is sent to the SDN controller for routing informa-
tion. The controller responds by installing a forwarding
rule for this flow. Subsequent packets of the same flow
are matched with the forwarding rule installed at the
SDN switch/router and routed at line rate.

Piggybacking on the SDN reactive routing, we pro-
pose a framework called SDN-Defense, which inspects

the first K packets of a flow forwarded to the SDN con-
troller. In SDN-Defense, the controller delays installa-
tion of a flow’s forwarding rule at the edge switch /router
until the Ky, packet of this flow is inspected (unless an
earlier decision is made). Each of these first K pack-
ets are inspected by selected IDS/IPS rules (a design
choice) at the controller. If the packet is benign but the
controller has not seen all the first K packets, the con-
troller will send this packet to the corresponding output
port of its edge switch via a packet_out message with-
out installing a forwarding rule for this flow. Then the
packet is forwarded to its destination as normal. If the
packet is detected to be malicious, the controller drops
this packet and sets up a blocking rule at the edge switch
to drop subsequent packets of this malicious flow (mit-
igation). If all the first K packets are determined to be
benign, the controller installs a forwarding rule for this
flow at the edge switch so that subsequent packets of
the same flow will be forwarded at switch level.

The choice of the K parameter in SDN-Defense de-
pends on the detection performance and the cost in-
curred. We now characterize how K parameter affects
the detection performance in detail.

3.2 Feasibility Study

We use campus WiFi traffic captured in May 2014 for
our experiments. The 10.67-hour long trace is 296GB in
size and contains over 269 Million packets corresponding
to over 5 Million flows. We define flows as unique unidi-
rectional 5-tuples (i.e. protocol, source IP, source port,
destination IP, destination port). Figure la plots flow
size distribution of this dataset. As shown in Figure 1a,
96% of the flows have no more than 100 packets. The
average flow size is 53 packets. We run this WiFi traffic

600 - S S
10 e

|

0.9
0.8-
400

0.7-
w 0.6-

Qo5+

w
S
)

0.4+

)
)

0.3+

0.2

No. of flows triggering the rule
> w n
g
g

o : | i o 107 10*
fov ior 10 io* 1ot Rank
Flow size (#packets)

(a) Cumulative distribution of

. of malicious flows seen per
flow size.

rule.
Figure 1

against open-source Snort detection rules[5]. The trace
generates a total of 1770 TCP alerts from 44 different
rules (with unique SIDs), triggered by 1145 flows. We
rank the rules in decreasing order based on the num-
ber of flows triggering each rule. From Figure 1b, we
can see that the top 4 most-frequently triggered rules
detect more than 75% of the total malicious flows. We
will focus on these 4 rules in our discussion later.

3.2.1 Which packet triggers an alert?

(b) Ranked distribution of No.

The question we seek to answer is: how deep do we
need to look into a flow to make a decision whether it
is malicious or benign? Towards this end, we divide a
complete TCP connection into two unidirectional traf-
fic flows: initiating direction traffic (i.e., from client to
server) and responding direction traffic (i.e., from server
to client). From client to server, the 15 packet is a TCP
SYN packet; the 2"? packet is an ACK packet; the 3"
packet is the first data packet and so on. From server to
client, the 1°¢ packet is a TCP SYN-ACK packet; the
274 packet is the first data packet and so on.

We define earliest position_in_flow as the earliest packet
position in a TCP flow that triggers a specific security
alert. Note that the packet position is counted within
unidirectional traffic of a flow. For each of the top 4
most-frequently triggered rules, we analyze all the asso-
ciated malicious flows and plot the distribution of earli-
est position_in_flow in Figure 2. Rule 24111, looking for
a signature pattern matching against the HTTP header
of a packet, is the most-frequently matched rule (en-
compassing 44.2% of malicious flows). Figure 2 shows
that 100% of malicious flows triggering Rule 24111 can
be detected within the first 3 packets. The same obser-
vation holds for both rule 32847 (ranked 3" covering
9.26% of malicious flows) and rule 30260 (ranked 4"
covering 5.94% of malicious flows). All these rules look
for patterns matching against HT'TP header of a packet.
Rule 16301, which ranks 2"¢ (triggered by 18.2% of
malicious flows), looks for a signature pattern in the
packet payload. As seen in Figure 2, the distribution of
earliest position_in_flow spreads out deep into the flow.
However, 60% of malicious flows could still be detected
within the first three packets.

3.2.2 Detection coverage vs K parameter

Our observations imply that various security attacks
can be detected early in the flow. We define the metric
detection coverage to quantify the overall success of de-
tection vs the K parameter. The detection coverage is
defined as the fraction of the number of malicious flows
detected within the first K packets over the total num-
ber of malicious flows detected after running against the
Snort rules. As we will see in Section 4, 73% of mali-
cious flows can be detected within the first 3 packets,
and 90% of malicious flows are detected within the first
4 packets of a network flow.

4. COST ANALYSIS

Is offloading security checks to the SDN controller
feasible in practice? To answer this question and delin-
eate the associated costs of performing inspection, we
compare two cases: (1) SDN reactive routing (SDN-
RR) and (2) SDN-Defense in terms of the following two
performance metrics: (a) controller response time and
(b) controller throughput. We will discuss how configu-
ration parameters such as flow depth (i.e. K) affect the
performance of SDN-Defense in Section 4.1, and per-
form detailed sensitivity analysis with respect to the

>

80+

60}

40+

20+

Fraction of flows detected (%)

23 4 5
Earliest position in flow

(a) SID 24111

10 20 50 10

Is)

@
=)

N
=)

I
S

Fraction of flows detected (%)
= @
=] (=]

=)

||l|
2 3 4 5

| I
10 20 50 10

Earliest position in flow

(b) SID 16301

Is)

Fraction of flows detected (%)

80~

60

40-

Y23 4 s
Earliest position in flow

(c) SID 32847

10 20 50 10

Is)

Fraction of flows detected (%)

20~

Y20 3 4 5 10 20 50 100
Earliest position in flow

(d) SID 30260

Figure 2: Fraction of flows detected vs the earliest position_in_flow for most-frequently occurring rules.

1.0

. 3050,

w
=3
S
S

2950+

N
©
=3
S

K

T T T
@—e SDN-Defense (M1 ruleset)

H-# SDN-Defense (M2 ruleset) ||
v 4—4 SDN-Defense (M3 ruleset)
-4 SDN-Defense (M4 ruleset)

AN\ *—* SDN-RR |

G Gl SIITE TS SR

N
®
@
=}

Avg. T, (requests/second)

| L —
................................. e—e SDN-Defense (M1 ruleset)
0.8 o H-# SDN-Defense (M2 ruleset)
g ’ 1414 +—4 SDN-Defense (M3 ruleset)
© ’g #-4 SDN-Defense (M4 ruleset)
3 -|
306 | E | jo = sonRr
3 g
o g y
c
S04 1 O a9 A,
i g ‘i
o o
° <
Q.2 | — M1/M4 ruleset | 1.38 v‘
= M2 ruleset
‘‘‘‘‘‘ M3 ruleset
1.37, i L i H H
1 2 3 4 5 6
0-fg 701 10 108

K parameter

(a) SDN-Defense detection coverage
as a function of K and M.

K parameter

(b) CRT(measurements under (i)
SDN-RR and (ii) SDN-Defense

78 9 10 BOY—5 34 5 6 7 8 9 1
K parameter

(¢) T measurements under (i)
SDN-RR and (ii) SDN-Defense

Figure 3

two cost metrics in Section 4.2 and 4.3, respectively.
4.1 SDN-Defense Parameters

As described earlier, K represents the flow depth ex-
amined by SDN-Defense. With a larger K, more ma-
licious flows are detected by SDN-Defense. However,
larger K means more packets are sent to the controller
(adding extra load to it) and introducing a longer la-
tency to the network. Therefore, there is a trade-off
involved in choosing an appropriate K value for deploy-
ment. Further, let M; denote the subset of Snort detec-
tion rules offloaded to the controller site. As in the case
of K, the detection can be more comprehensive with a
larger subset M;. However, larger M; will take longer
for a packet to run through the detection engine, incur-
ring higher overhead on the controller. In SDN-Defense,
K and M; are the two tunable parameters for balanc-
ing between cost and detection accuracy (benefit). The

M; Description | M| %Cov-
erage
M| All Snort 2.9.8.3 rules [5]. 12.3k 100
My| Highest priority rules. 11k 89.9
Ms3| Rules scanning http headers. 1750 79.7
M,| Rules triggered by WiFi traffic. | 53 100

Table 1: Rule subsets M; offloaded to the controller.

My can be obtained from historical knowledge.
choice of which ruleset M; would be offloaded to the

controller depends on (a) the security policy, (b) traffic
load, and (c) the traffic characteristics of the managed

network. To perform a fair comparison, we utilize the
rule subsets shown in Table 1 in our experiments. The
%Coverage in Table 1 is defined as the percentage of
malicious flows in our dataset detected by a given rule
subset. Network managers can dynamically update and
modify the choice of these rulesets offloaded to SDN-
Defense based on the operational conditions.

Figure 3a shows how the detection coverage varies for
different choices of K and M;. Note that M; and M,
share the same characteristic since M, includes all the
rules which were seen in campus traffic. It is interesting
to note that with the choice of K = 4, we can detect
~81% of malicious flows with the highest priority ruleset
My, and ~78% of malicious flows with the http-header
ruleset M3. Further, when using the full ruleset M7, we
can detect up to 90% of all threats with K = 4. These
results demonstrate the feasibility of offloading subsets
of Snort rules to the controller while maintaining good
detection coverage. We now elaborate on the impact of
SDN-Defense on the controller response time.

4.2 Controller response time

In an SDN network where flow setup is performed
reactively, the controller response time? directly affects
the flow completion time. We define the metric, zero-
load controller response time (CRT), as the controller’s
processing time for handling a single packet_in message

2The processing time between the switch sending a
packet_in message to the controller and receiving a cor-
responding controller response message.

when there is no queuing delay (i.e., at minimal load).
We use this metric to quantify the processing complex-
ity of the controller.

To measure CRTy, we modify the Cbench tool [2]
to send real packet_in messages generated using cam-
pus traffic to the controller one by one. The Cbench
tool emulates the communication between OVS and the
SDN controller. The controller application is developed
in POX [4]. We then record the time it takes to re-
ceive the corresponding response messages from the con-
troller. To eliminate queuing delay from the measured
response time, we maintain one packet_in request on the
fly and wait for response before firing the next request.
This helps us clearly delineate the delay introduced by
SDN-Defense security checks at the controller.

Figure 3b shows the average CRT for (a) SDN-RR
and (b) SDN-Defense with different choice of K param-
eter and different rulesets. Note that CRT is the aver-
age controller response time for a packet going through
controller plus the average Snort processing time per
packet. As shown in Figure 3b, the CRT increases
switching from SDN-RR to SDN-Defense at K = 1 due
to the additional delay introduced for running packets
through the detection engine. Furthermore, we observe
a difference in CRTy when using different rulesets M.
This is expected, as it takes a shorter time for a packet
to run through the detection engine with a smaller num-
ber of offloaded rules and vice versa.

When K is small (K = 1,2), the packets sent to
the SDN controller are mostly handshaking packets,
which are relatively short and these can only trigger
lightweight non-payload rules offloaded to SDN-Defense.
When K is larger (K >= 3), larger packets with pay-
load data are sent to the controller and it takes a longer
time for the detection engine to process these packets
(i.e. pattern matching with payload rules). Note that
CRT\ increases with an increase in K, however, for
K >= 4 there is very little growth in CRTy. SDN-
Defense introduces as little as 1.5% CRTy overhead
compared to SDN-RR and achieves 81% detection cov-
erage when offloading Ms, and 90% detection coverage
with M; offload. Furthermore, the C'RTj overhead for
SDN-Defense is as small as ~0.94% when using smaller
rulesets M3 - this will provide up to 78% detection cov-
erage. The operational choice of K and M; should also
take into account their impact on controller throughput,
as we will discuss next.

4.3 Controller throughput

In this section, we examine the impact of SDN-Defense
on controller throughput. We define controller through-
put (T.) as the maximum number of requests the con-
troller can handle per unit time. To measure 7., we
modify the Cbench tool to encapsulate packets from
campus traffic in OpenFlow packet_in messages. Then,
we issue these packet_in requests to the controller at
the maximum possible rate without packet drops. Fi-
nally, we record the number of response messages re-

ceived from the controller in unit time and compute the
throughput T,.. Note that although such traffic replay
may not preserve the internal interaction between the
packets of a TCP connection (e.g. a TCP SYN packet
needs to be received by the server before it sends out the
TCP SYN-ACK packet), it is sufficient to quantify the
impact of SDN-Defense on the controller throughput.

Figure 3¢ shows the T, measurements for (a) SDN-
RR and (b) SDN-Defense under various choices of K
parameter and different rulesets M;. As expected, the
throughput drops when switching from SDN-RR to SDN-
Defense at K = 1. Further, T, decreases with increasing
K for any offloaded ruleset. However, it is important
to note that the decrease in throughput due to SDN-
Defense is as low as 3.0% when using K = 3 and the M3
(http-header) ruleset. This configuration will provide us
up to 61.5% detection coverage. Furthermore, the drop
in throughput is as small as 5.8% when offloading the
full Snort ruleset M; with K = 4 (this gives us 90%
detection coverage). These results are promising and
demonstrate the lightweight nature of SDN-Defense.

In practice, there is no “right” or “wrong” settings for
configuration parameters K and M;. Network adminis-
trators can choose desirable K values and M; depending
on security goals and performance requirements of the
network where SDN-Defense is deployed. The opera-
tional choice of K can also be guided by the ruleset
M; being offloaded to the controller. For instance, if
an administrator would like to offload only lightweight
http-header rules M3 to the controller, the K value can
be set lower since http-header information is available
earlier on in the flow. The choice of the ruleset M;
depends on the security policy, traffic load, and traffic
characteristics as enumerated earlier.

The characteristics presented in Figure 3 can serve as
a guideline for administrators to help tune SDN-Defense
parameters to find an operational sweet-spot. Further-
more, the flexibility of SDN can be exploited to adap-
tively change the K values and the ruleset M;. For
instance, the administrator can set a network policy to
increase K if the network is lightly loaded and to a
smaller M; if the network load exceeds a given limit.

S. DISCUSSION

We now briefly discuss controller scalability issues
and other applications which can benefit from the pig-
gybacking approach. For a more detailed discussion of
these applications and issues such as evasion by a ma-
licious adversary, we refer the reader to our detailed
technical report [13].

5.1 Scalability

SDN-Defense piggybacks on reactive routing to per-
form security checks on the first few packets sent to the
controller. In practice, reactive routing is not widely
deployed in wide-area networks, because (1) The con-
troller becomes the bottleneck under large traffic load.
(2) Having packets going through the switch-controller-

field_list hash_fields {
ipvé.srcAddr;

Il load K parameter from runtime flow rules
action set_K_value(k_input) {

I/ Define the field list to compute hash on i
modify_field(custom_metadata.K_VALUE, k_input);

ipva.dstAddr; I/l Use the 5-tuple of
Ipv4protocol; 1l (src ip, dst ip, src port, dst port, ip protocol)
custom_metadata.srcPort;
custom_metadata.dstPort; field_list i2e_mirror_info { standard_metadata; }
) action mirror_select() { // Mirror selected packets
field_list_calculation flow_state_hash { clone_ingress_pkt_to_egress(100, i2e_mirror_info);
input { hash_fields; } }
algorithm: csum16;
output_width: HASH_BIT_WIDTH; table set_K {
actions { set_K_value; }
register flow_state_counter1 { size: 1;
width: 16; // Define registers to store the counts }
instance_count: HASH_TABLE_SIZE; table mirror {
actions { mirror_select; }
size : 1;
I/ Update counter on each packet
action add_flow_state_count() {
modify_field_with_hash_based_offset(custom_metadata.hash_valt,
0, flow_state_hash1, HASH_TABLE_SIZE);
register_read(custom_metadata.count_val1,
flow_state_counter1, custom_metadata.hash_val1);
add_to_field(custom_metadata.count_val, 1);
register_write(flow_state_counter1, custom_metadata.hash_val1,
custom_metadata.count_val1);

}
control ingress {
apply(set_K);
//'Send copy of inital K packets of a flow to SF-Module
if (custom_metadata.count_val1 <= custom_metadata.K_VALUE){
apply(mirror);

}
apply(forward); /I Packets are forwarded normally as well

(B)

}
table hash_table {
actions { add_flow_state_count; }

table_set_default set_K set_K_value 4 // load K parameter
size: 5 table_set_default mirror mirror_select

table_set_default forward set_nhop

table_set_default hash_table add_flow_state_count

}
control ingress {
mirroring_add 100 3

apply(hash_table);

(A) (©)

Figure 4: Sample P4 code with A calculating 5-tuple
hash for incoming packets and updating counters; B
compares current counter with K parameter and if less,
copy of packet is sent to the mirroring port; C shows
runtime table entries.

switch loop introduces additional end-to-end latency.
There are several potential solutions to resolve the scal-
ability issues here.

In the packet mirroring approach [16], the controller
first proactively pushes rules into the SDN switches.
These rules direct switches to perform normal packet
forwarding while simultaneously instructing them to send
a copy of the packet to the controller or a separate de-
tection engine. The controller then decides when to stop
mirroring by reactively installing a fine-grained flow en-
try with a higher priority, which overrides the mirror-
ing rule. We note that using packet mirroring forwards
packets as normal, hence negligible additional end-to-
end latency is introduced with this approach. However,
due to the limitation of OpenFlow, simple flow level
logic such as identifying initial K packets of a flow (for
later security processing), requires the involvement of
the controller, potentially making the controller the bot-
tleneck. In practice the controller may end up receiving
more than K packets before the corresponding reactive
rule to stop mirroring gets installed at data plane. This
problem exacerbates with increasing traffic load.

Emerging switches that are programmable using lan-
guages like P4 [3, 1], provide new capabilities, such as
flexible parsing, hashing over parsed fields, and support-
ing registers to maintain stateful flow records. Utilizing
these new capabilities, P4-enabled switches can be pro-
grammed to identify the initial K packets per flow and
mirror a copy of them to the controller. Example P4
code to achieve this is shown in Figure 4. It remains to
be seen however, how widespread the deployment of P4
switches will turn out to be in reality. Alternatively, we
can integrate flow sampling into SDN-Defense to accom-
modate large traffic load. For example, using IP-block
based flow sampling ensures traffic from the important
IP blocks are examined under large traffic load.

5.2 Other Applications

Application Identification: Bernaille et al. [6], [7]
in their work, show that it is possible to perform early
application identification with high accuracy (>90%)
using only the first four or five packets of a network
flow. Inspired by such results, we envision that a piggy-
backing based application identification service running
on the SDN controller could achieve accurate and on-
the-fly application classification. The features required
for classification can be obtained in an online fashion
with the arrival of each reactively routed piggybacking
packet at the controller. Utilizing such a mechanism
presents two clear benefits, (a) Network administrators
can gain immediate and accurate visibility into the traf-
fic mix of their network thanks to the global view of the
controller, while eliminating problems occurring due to
traffic blind-spots. (b) The dynamic control capabili-
ties offered by SDN when coupled with online applica-
tion identification can enable administrators to rapidly
react to changes in traffic mix in their network.

Dynamic Traffic Dispersion Graph (TDG) Gen-
eration: TDG’s are effective tools to answer ‘Who talks
to whom?’ type questions, performing anomaly detec-
tion [9] and other network monitoring tasks. Tradition-
ally, TDG’s have been generated by performing expen-
sive trace collection at the network edge followed by
offline analysis. We propose utilizing the packets avail-
able via reactive routing for free to dynamically gen-
erate TDG’s at the SDN controller. These TDG’s can
be generated periodically or on-demand with connectiv-
ity information obtained in the initial reactive routing
packets. Thanks to the global view of the SDN con-
troller, the TDG’s generated by this methodology will
offer a more comprehensive picture for network adminis-
trators and SDN applications which utilize TDG’s. This
approach takes away issues of traffic blind-spots associ-
ated with collection of traces at the network edge and
minimizes data collection overheads while allowing for
an online and dynamic way to generate TDG'’s.

6. CONCLUSION

In this paper, we explored the feasibility of piggy-
backing on SDN reactive routing to support network
functions e.g., IPS. Our investigation with campus WiFi
traffic revealed that upto 90% of malicious flows are de-
tectable with examination of just the first 4 flow pack-
ets. Using these insights, we prototyped and evalu-
ated a piggybacking based intrusion prevention system
called SDN-Defense. We showed that SDN-Defense can
achieve upto 90% detection coverage with a minimal
(5.8%) drop in controller throughput by examining just
the four initial packets of a flow. We also discussed de-
sign issues such as controller scalability and presented
two other applications which can benefit from the pro-
posed piggybacking approach. We elaborate on these
applications and security issues such as evasion in our
detailed technical report [13].

7.
[1]
2]

3

4

5

[

]
]
]
6]

[12]

[13]

REFERENCES

Barefoot networks

:https:/ /www.barefootnetworks.com/technology/.
Cbench: an OpenFlow controller benchmarker.
https://github.com/mininet /oflops/tree/master/
cbench.

Netronome: https://www.netronome.com.

Pox: https://github.com/noxrepo/pox.

Snort: https://snort.org.

L Bernaille, R Teixeira, and K Salamatian. Early
application identification. In Proceedings of the
2006 ACM CoNEXT conference, page 6. ACM,
2006.

Bernaille et al. Traffic classification on the fly.
ACM SIGCOMM Computer Communication
Review, 36(2):23-26, 2006.

Giotis et al. Combining openflow and sflow for an
effective and scalable anomaly detection and
mitigation mechanism on sdn environments.
Computer Networks, 62:122-136, 2014.

Le et al. Traffic dispersion graph based anomaly
detection. In Proceedings of the Second
Symposium on Information and Communication
Technology, pages 36-41. ACM, 2011.

Liao et al. Intrusion detection system: A
comprehensive review. Journal of Network and
Computer Applications, 36(1):16-24, 2013.

Xing et al. Sdnips: Enabling software-defined
networking based intrusion prevention system in
clouds. In 10th International Conference on
Network and Service Management (CNSM) and
Workshop, pages 308-311. IEEE, 2014.

Yoon et al. Enabling security functions with sdn:
A feasibility study. Computer Networks, 85:19-35,
2015.

C Liu, A Raghuramu, C-N Chuah, and

B Krishnamurthy. Piggybacking network functions
on sdn reactive routing: A feasibility study.
https://www.dropbox.com/s/5gi0toqqkd891t4/
piggybacking-network-functions-v10.pdf?dl=0,
2016.

S Mehdi, J Khalid, and S Khayam. Revisiting
traffic anomaly detection using software defined
networking. In Recent Advances in Intrusion
Detection, pages 161-180. Springer, 2011.

A Papadogiannakis, M Polychronakis, and

E Markatos. Improving the accuracy of network
intrusion detection systems under load using
selective packet discarding. In Proceedings of the
Third European Workshop on System Security,
pages 15-21. ACM, 2010.

Y. Wang, C. Orapinpatipat, H. Gharakheili, et al.
Telescope: Flow-level Video Telemetry using
SDN. In Proc. of EWSDN, 2016.

