
Delorean: Using Time Travel to Avoid Bugs and

Failures in SDN Applications

Zhenyu Zhou

†

, Theophilus Benson

†

, Marco Canini

⇤

, Balakrishnan Chandrasekaran

§

†

Duke University,

⇤

KAUST,

§

TU Berlin

1. INTRODUCTION
Bugs are endemic in software and SDN applications (SDN-

Apps) are no exception. SDN controllers are fragile: crashes
induced by bugs in SDN-Apps can, in the worst case, crip-
ple the entire SDN stack [2,9]. Crashes of SDN-Apps result
in service outages, which is simply a euphemism for loss of
revenue. Businesses can lose, for instance, thousands of dol-
lars per minute because of outages [1, 6–8]. We aim, hence,
to minimize outages by tolerating SDN-App crashes, even
in case of deterministic faults.

Although the SDN community has made progress in terms
of designing better (or more robust) SDN-Apps, and in
weeding out bugs through sophisticated testing methods,
the question of “How do you devise an online technique
to safely and systematically circumvent a bug that mani-
fests even in a well- designed and well-tested SDN-App run-
ning in a production environment?” remains, largely, under-
explored. LegoSDN [2] tackles the problem of SDN-App
crashes head-on, offering a framework to rollback the effects
of a crashed SDN-App and transform the crash-inducing in-
put to handle deterministic faults. The system, however,
blindly regards the last input as crash-inducing and treats
SDN-Apps as black boxes. Orthogonal attempts to employ
Paxos-style replication, e.g., Ravana [3] and Onix [4], lack
support for tolerating deterministic faults.

We treat failures as first-class citizens and, in the event of
an SDN-App failure, propose Delorean to provide a quick,
safe, online recovery of the SDN-App. At a high-level, the
recovery comprises a rollback of both control-plane and data-
plane changes, and a transformation of the crash-inducing
input—modification of an input event to one or more seman-
tically equivalent but syntactically different input event(s)—
to handle even deterministic faults.

Delorean employs symbolic execution (SE) to gain insight
into the application logic. Through static analysis, Delorean
discovers a set of possible code paths (i.e., path through the
Permission to make digital or hard copies of part or all of this work for personal
or classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice
and the full citation on the first page. Copyrights for third-party components
of this work must be honored. For all other uses, contact the Owner/Author(s).
Copyright is held by the owner/author(s).
SOSR ’17, April 03 - 04, 2017, Santa Clara, CA, USA

c
� 2017 Copyright held by the owner/author(s). Publication rights licensed to
ACM. ISBN 978-1-4503-4947-5/17/04. . . $15.00
DOI: http://dx.doi.org/10.1145/3050220.3060610

source code indicating the control flow for a given input)
within the SDN-App along with a set of path conditions (i.e.,
predicates in a conditional statement, e.g., “if”, that need to
be satisified for the execution to proceed along a given code
path). To counter scalability issues of SE, Delorean performs
a one-time offline analysis of the SDN-App and persists the
output, an execution tree comprising all code paths along
with the corresponding path conditions, for later use in an
online recovery.

Delorean aims to recover from both deterministic and non-
deterministic bugs of SDN-Apps based on the insights pro-
vided by SE: Delorean attempts to identify the crash path
(code path where the crash happened), and to steer the SDN-
App away from the crash path.

2. SYSTEM DESIGN
Delorean is a shim layer between the SDN controller and

SDN-Apps. The system architecture comprises six modules:
App Manager; Symbolic Execution Analyzer (SEA); Crash
Cause Analyzer (CCA); Transaction Manager; Transforma-
tion Generator; and Recovery Optimizer (RO).

The App Manager records messages exchanged between
the SDN-Apps and the controller. The SEA module sym-
bolically executes the SDN-App code to build the execu-
tion tree. The Transaction Manager enables rollback of both
control-plane and data-plane changes. The Transformation
Generator generates transformations based either on heuris-
tics or on predefined rules from the network operator.

Delorean addresses two fundamental challenges: (1) de-
termine the precise input event in the past (referred to as a
rollback point) to rollback the control plane and data plane
to; and (2) determine the transformations to apply while min-
imizing both the recovery time and the likelihood of another
crash (either during or after a recovery attempt).

2.1 Crash Cause Analyzer (CCA)
Determination of the rollback point requires striking a trade-

off between efficiency (time required to complete recovery)
and effectiveness (likelihood of a successful recovery): re-
covery becomes inefficient if we rollback too far, and inef-
fective if we do not go back far enough. The CCA module
tackles this challenge with the insights gained from SE.

Given the the crash path and its path conditions, the CCA
module iterates through the history of input events (and state-
variable changes) of the crashed SDN-App, in reverse chrono-

http://dx.doi.org/10.1145/3050220.3060610

logical order, to determine a crash cause. An input event
is regarded as a crash cause if (1) it is non-idempotent and
modifies one or more state-variables relevant to the path con-
ditions of the crash path, and (2) prior to processing this in-
put the execution of the SDN-App proceeded on a crash-free
code path.

2.2 Recovery Optimizer (RO)
The objective of transforming an input event is simply to

drive the execution of the SDN-App away from the crash
path. Some transformations, however, may be “better” than
others. In an effort to increase the likelihood of a successful
recovery and minimize recovery time, the RO module con-
sideres these “better” transformations before the others. To
this end, the RO module ranks transformations using both
domain-specific heuristics and empirical observations. For
instance, the RO module analyzes each transformation to de-
termine the path overlap between the code path of the trans-
formed input event and that of the crash scenario. Path over-
lap is defined as the number of branches (involving condi-
tionals) in the execution tree of an SDN-App that are com-
mon between two code paths. A long path overlap indicates
a minimal change in the SDN-App behavior, i.e., on pro-
cessing the transformed input the SDN-App deviates from
the crash path at a (branch) location in close proximity to
where the crash happened, while a short path overlap implies
the contrary. Delorean ranks the transformations in decreas-
ing order of path overlap in an effort to recover successfully
while introducing only a minimal change.

3. METHODOLOGY
After an SDN-App crash Delorean proceeds as follows.

1. The CCA module determines the crash path, by analyzing
the history of input events and changes in the SDN-App’s
states, and finds the root cause of crash.
2. The transformation generator produces a list of potential
transformations of the crash-cause, which are then ranked by
the RO module.
3. The transaction manager restarts the SDN-App and re-
stores both the data-plane and control-plane states.
4. The recovery process terminates if the SDN-App pro-
cesses the transformed events without crashing. Otherwise,
the process resumes from Step-3 with the next transforma-
tion in the list. After exhausting the transformations of the
current crash cause, the system will revert to Step-1 to find
another crash cause from an earlier instance of time.

4. EVALUATION
For evaluations, we emulated the data plane using Mininet [5]

and used custom Python scripts to setup the topology, gen-
erate traffic between hosts, inject failures, as well as collect
measurements. Both Mininet and the scripts were run on
a Linux (Ubuntu 14.04 LTS) server with 12 processor cores
and 16 GB of memory. We used three different SDN-Apps—
Learning Switch, Stateful Firewall and Forwarding Module.

Figure 1 compares a wide spectrum of rollback strategies.
While LegoSDN always rolls back to the last input, Delorean

�

��

��

��

��

���

���� ������ ��������
�

�

��

��

��

��

��
��
��
��
��
��
��
��
�
��
��
�
��
�
��
�

�
��
��
�
��
�
��
��
��
�

�������� ����������

������� ����
������ ����

������ ����
���� ������ ���� �����

Figure 1: Comparison of different rollback strategies, show-
ing that complex bugs require a more principled recovery
strategy like that of Delorean

tries to determine an optimal solution in a principled manner.
The random strategy uses an adhoc manner to find the opti-
mal solution.

The results highlight that while a naïve rollback to the last
event may suffice for simple failures, complex failures re-
quire a more principled approach. Unsurprisingly, randomly
selecting the rollback point suffices in some cases. Figure 1
indicates that Delorean is better than LegoSDN [2] in effi-
ciently recovering from SDN-App crashes. While not shown
here, Delorean also performs better and faster than recovery
strategies such as controller reboot or application reboot.

We also measured the time spent in the SE process, and
observed that the time does increase with more code paths.
We, however, note that Delorean only incurs the cost once
per SDN-App; the result of this symbolically analysis is used
until the SDN-App’s source code is changed. The mean
times were 2.33 s, 2.61 s and 2.78 s for Hub (1 path), Learn-
ing Switch (9 paths) and Hedera (13 paths), respectively.

In a nutshell, our preliminary results show that Delorean
recovers successfully from a wide range of bug scenarios
while related crash-recovery techniques falter in a majority
of them.

5. REFERENCES
[1] Avaya. Network Downtime Results in Job, Revenue Loss.

http://www.avaya.com/en/about-avaya/newsroom/news-releases/
2014/pr-140305/, March 2014.

[2] B. Chandrasekaran, B. Tschaen, and T. Benson. Isolating and
Tolerating SDN Application Failures with LegoSDN. In SOSR, 2016.

[3] N. Katta, H. Zhang, M. Freedman, and J. Rexford. Ravana: Controller
Fault-tolerance in Software-defined Networking. In SOSR, 2015.

[4] T. Koponen, M. Casado, N. Gude, J. Stribling, L. Poutievski, M. Zhu,
R. Ramanathan, Y. Iwata, H. Inoue, T. Hama, and S. Shenker. Onix: A
Distributed Control Platform for Large-scale Production Networks. In
OSDI, 2010.

[5] B. Lantz, B. Heller, and N. McKeown. A Network in a Laptop: Rapid
Prototyping for Software-defined Networks. In Proceedings of the 9th
ACM SIGCOMM Workshop on Hot Topics in Networks, 2010.

[6] A. Lerner. Gartner: The Cost of Downtime. http:
//blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/,
July 2014.

[7] Ponemon Institute. Cost of data center outages. Data Center
Performance Benchmark Series, January 2016.

[8] C. Preimesberger. Unplanned IT Downtime Can Cost $5K Per Minute
Report. http://www.eweek.com/c/a/IT-Infrastructure/Unplanned-IT-
Downtime-Can-Cost-5K-Per-Minute-Report-549007, May 2011.

[9] S. Shin, Y. Song, T. Lee, S. Lee, J. Chung, P. Porras, V. Yegneswaran,
J. Noh, and B. B. Kang. Rosemary: A Robust, Secure, and
High-performance Network Operating System. In CCS, 2014.

http://www.avaya.com/en/about-avaya/newsroom/news-releases/2014/pr-140305/
http://www.avaya.com/en/about-avaya/newsroom/news-releases/2014/pr-140305/
http://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/
http://blogs.gartner.com/andrew-lerner/2014/07/16/the-cost-of-downtime/
http://www.eweek.com/c/a/IT-Infrastructure/Unplanned-IT-Downtime-Can-Cost-5K-Per-Minute-Report-549007
http://www.eweek.com/c/a/IT-Infrastructure/Unplanned-IT-Downtime-Can-Cost-5K-Per-Minute-Report-549007

	1 Introduction
	2 System Design
	2.1 Crash Cause Analyzer (CCA)
	2.2 Recovery Optimizer (RO)

	3 Methodology
	4 Evaluation
	5 References

