
RICE: Remote Method Invocation in

ICN

Michał Król, Karim Habak, David Oran, Dirk Kutscher, Ioannis Psaras

2

It’s NOT about

● RPC, CORBA, Java RMI
● Tightly-coupled system from (not so)

long time ago

4

Give me data

Static data retrieval

5

Compute this for
me

c

In-network computation

6

In-network computation

● Multiple use-cases
– edge/fog computing, IoT, VR/AR

● Multiple existing frameworks: NFN,
NFaaS, CCNxServe, SCN, NextServe

● Migrate functions where they’re
needed the most

● Populate FIB tables with routes to
services

7

No need for a
DNS/SDN server

Anycast

8

Load control

9

c

c

Result caching

10

Issues

11

Client Authorization

12

Large Parameter Passing

13

Accommodating non-trivial
computations

PIT expires

14

Accommodating non-trivial
computations

15

RICE Design

16

Design Goals

● Consumer authentication and authorization
● Large parameter passing
● Accommodating non-trivial computations
● Allow result caching
● Adhere to ICN principles

– Pull model
– Avoid revealing permanent client identifers
– Support client mobility

● Make minimal changes to ICN protocols and
forwarder behaviour

Naming

19

4-way Handshake

● Enable 2-way communication between
producers and consumers

● Shared Secret Derivation
● Client Authentication
● Large Input Parameters Submission

4-way Handshake

21

Dynamic Content
Retrieval

22

Network and Application Timescale

● PIT entries use timeouts
● When requesting static content

Interest Satisfaction Time equals RTT
● Generating dynamic content adds a

delay that is unknown to the network
● PIT entries can expiry before

returning the results

Network Timescale Application Timescale

● Fast recovery
● No assumption on

execution time

● Huge overhead
● Challenging

bandwidth
allocation

● Low overhead
● Regular Bandwidth

allocation

● Slow Recovery
● Requires a lot of

knowledge

We want to decouple application timescale from
network timescale

Thunks

Network Timescale

Application Timescale

Acknowledgements

29

Results

30

Handshake

31

Thunks

32

Thunks

33

Referentially opaque function

34

Referentially transparent function

Thunks

36

Prototype

37

Limitations

● Thunks require accurate computation
time estimation
– Overestimation increases the delay
– Underestimation increases overhead

● Referentially transparent functions
can be cached under diferent names
– Can be solved by using forwarding hints

38

Conclusion and Future Work

● Client authentication, large parameter
passing, accommodating non-trivial
computation using a 4-way handshake
+ thunks

● Generic API for function invocation
● RICE can be a basis for many NFN-

inspired systems.
● Prototype and demo

39

In the future

● Integration with routing hints and NACKs
● Implement highly-scalable server
● Developing higher-layer abstractions on

top of RICE.
– pushing data (for custodial transfer, re-publishing,

storing)
– support for more pervasive in-network computing
– rethinking and re-engineering existing

applications, especially web

40

Thank you

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40

