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It’s NOT about

● RPC, CORBA, Java RMI
● Tightly-coupled system from (not so) 

long time ago
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Give me data

Static data retrieval
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Compute this for 
me

c

In-network computation



6

In-network computation

● Multiple use-cases
– edge/fog computing, IoT, VR/AR

● Multiple existing frameworks: NFN, 
NFaaS, CCNxServe, SCN, NextServe

● Migrate functions where they’re 
needed the most

● Populate FIB tables with routes to 
services 
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No need for a 
DNS/SDN server

Anycast
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Load control
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c

c

Result caching
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Issues
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Client Authorization
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Large Parameter Passing
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Accommodating non-trivial 
computations

PIT expires
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Accommodating non-trivial 
computations
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RICE Design
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Design Goals

● Consumer authentication and authorization
● Large parameter passing
● Accommodating non-trivial computations
● Allow result caching
● Adhere to ICN principles

– Pull model
– Avoid revealing permanent client identifers 
– Support client mobility

● Make minimal changes to ICN protocols and 
forwarder behaviour





Naming
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4-way Handshake

● Enable 2-way communication between 
producers and consumers

● Shared Secret Derivation
● Client Authentication
● Large Input Parameters Submission



4-way Handshake
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Dynamic Content 
Retrieval
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Network and Application Timescale

● PIT entries use timeouts
● When requesting static content 

Interest Satisfaction Time equals RTT
● Generating dynamic content adds a 

delay that is unknown to the network
● PIT entries can expiry before 

returning the results



Network Timescale Application Timescale

● Fast recovery
● No assumption on 

execution time 

● Huge overhead 
● Challenging 

bandwidth 
allocation

● Low overhead 
● Regular Bandwidth 

allocation

● Slow Recovery  
● Requires a lot of 

knowledge 

We want to decouple application timescale from 
network timescale



Thunks



Network Timescale



Application Timescale
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Results
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Handshake
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Thunks
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Thunks



33

Referentially opaque function
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Referentially transparent function



Thunks
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Prototype
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Limitations

● Thunks require accurate computation 
time estimation
– Overestimation increases the delay
– Underestimation increases overhead

● Referentially transparent functions 
can be cached under diferent names
– Can be solved by using forwarding hints
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Conclusion and Future Work

● Client authentication, large parameter 
passing, accommodating non-trivial 
computation using a 4-way handshake 
+ thunks

● Generic API for function invocation
● RICE can be a basis for many NFN-

inspired systems.
● Prototype and demo
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In the future

● Integration with routing hints and NACKs
● Implement highly-scalable server
● Developing higher-layer abstractions on 

top of RICE.
– pushing data (for custodial transfer, re-publishing, 

storing)
– support for more pervasive in-network computing
– rethinking and re-engineering existing 

applications, especially web
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Thank you
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