NDN, CoAP, and MQTT: A Comparative Measurement Study in the IoT
ACM ICN 2018, Boston

Cenk Gündoğan1 \quad Peter Kietzmann1 \quad Martine Lenders2
Hauke Petersen2 \quad Thomas C. Schmidt1 \quad Matthias Wählisch2

1\textsc{Haw} Hamburg
2\textsc{Freie Universität Berlin}
Common IoT Communication

- Sensors and actuators connect to clouds
 - Today mainly based on MQTT
Common IoT Communication

- Sensors and actuators connect to clouds
 - Today mainly based on MQTT

- MQTT
 - Publish-subscribe protocol on TCP
 - Constrained IoT: MQTT-SN on UDP
Common IoT Communication

- Sensors and actuators connect to clouds
 - Today mainly based on MQTT
- MQTT
 - Publish–subscribe protocol on TCP
 - Constrained IoT: MQTT-SN on UDP
- CoAP
 - Request–response protocol on UDP
 - IETF solution for constrained IoT
Common IoT Communication

- Sensors and actuators connect to clouds
 - Today mainly based on MQTT
- MQTT
 - Publish–subscribe protocol on TCP
 - Constrained IoT: MQTT-SN on UDP
- CoAP
 - Request–response protocol on UDP
 - IETF solution for constrained IoT
- ICN
 - Promising candidate for future IoT
 - Intensifying attention since 2014
Research Question

How do these protocols perform and which is most appropriate for the IoT?
Outline

Protocol Overview

Metrics & Experiment Setup

Evaluation
 Single-hop: Push vs. Pull Protocols
 Multi-hop: Reliability and Protocol Performance

Conclusion & Outlook
CoAP

GET
GET /temp

2.05 Content 21°C
CoAP

GET
GET /temp

2.05 Content 21°C

GET (c)
GET /temp

2.05 Content 22°C
CoAP

GET

GET /temp

2.05 Content 21°C

GET (c)

GET /temp

X

2.05 Content 21°C
CoAP

GET
GET /temp

2.05 Content 21°C

GET (c)
GET /temp

X

2.05 Content 21°C

GET /temp

2.05 Content 21°C
CoAP

GET
GET /temp

2.05 Content 21°C

PUT
PUT /temp 21°C

2.04 Changed

GET (c)
GET /temp

2.05 Content 21°C

GET /temp

2.05 Content 21°C

GET /temp

2.05 Content 21°C
CoAP

GET
GET /temp

2.05 Content 21°C

PUT
PUT /temp 21°C

2.04 Changed

GET (c)
GET /temp

X
2.05 Content 21°C

PUT (c)
PUT /temp 21°C

X
CoAP

GET
GET /temp

2.05 Content 21°C

PUT
PUT /temp 21°C

2.04 Changed

GET (c)
GET /temp

2.05 Content 21°C

PUT (c)
PUT /temp 21°C

2.04 Changed
CoAP

GET

GET /temp

2.05 Content 21°C

PUT

PUT /temp 21°C

2.04 Changed

GET (c)

GET /temp

2.05 Content 21°C

PUT (c)

PUT /temp 21°C

2.04 Changed

GET /temp

2.05 Content 21°C

GET /temp

2.05 Content 21°C

PUT /temp 21°C

2.04 Changed

PUT /temp 21°C

2.04 Changed
CoAP

GET

GET /temp

2.05 Content 21°C

PUT

PUT /temp 21°C

2.04 Changed

OBS

GET /temp [OBS]

2.05 Content 21°C

GET (c)

GET /temp

X

2.05 Content 21°C

PUT (c)

PUT /temp 21°C

X

2.04 Changed

GET (c)

GET /temp

2.05 Content 21°C

PUT (c)

PUT /temp 21°C

2.04 Changed

2.05 Content 22°C
MQTT-SN

CONNECT

CONNACK

REGISTER /temp

REGACK topic_{id}

SUBSCRIBE /temp

SUBACK
MQTT-SN

CONNECT

CONNACK

REGISTER /temp

REGACK topic_id

SUBSCRIBE /temp

SUBACK

Q0

PUBLISH topic_id 21°C
MQTT-SN

CONNECT

CONNACK

REGISTER /temp

REGACK $topic_id$

SUBSCRIBE /temp

SUBACK

Q0

PUBLISH $topic_id$ 21°C

Q1

PUBLISH $topic_id$ 21°C

X
MQTT-SN

CONNECT

CONNACK

REGISTER /temp

REGACK topic_id

SUBSCRIBE /temp

SUBACK

Q0

PUBLISH topic_id 21°C

PUBACK

Q1

PUBLISH topic_id 21°C

PUBACK
MQTT-SN

CONNECT

CONNACK

REGISTER /temp

REGACK topic_id

SUBSCRIBE /temp

SUBACK

Q0

PUBLISH topic_id 21°C

Q1

PUBLISH topic_id 21°C

PUBACK
ICN

NDN

Interest /temp

Data /temp 21°C
ICN

NDN

Interest /temp

Data /temp 21°C

ACK

Interest /temp

Data /temp 21°C

[ACK]

NAM

Interest /temp

Data /temp 21°C

ACK

Interest /temp

Data /temp 21°C
ICN

NDN
Interest /temp

Data /temp 21°C

I-Not
Interest /temp/ 21°C

Data /temp/ 21°C [ACK]

Interest /temp

Data /temp 21°C

Interest /temp

Data /temp 21°C

ACK

ACK

ACK
ICN

ICN

NDN

Interest /temp

Data /temp 21°C

I-Not

Interest /temp/21°C

Data /temp/21°C [ACK]

Interest /temp/21°C

Data /temp 21°C
ICN

NDN
Interest /temp
Data /temp 21°C

I-Not
Interest /temp/21°C
Data /temp/21°C [ACK]

Interest /temp
Data /temp 21°C

Interest /temp
Data /temp 21°C

Interest /temp
Data /temp 21°C

ACK

ACK

ACK
ICN

NDN
Interest /temp
Data /temp 21°C
Interest /temp
Data /temp 21°C
Interest /temp
Data /temp 21°C

I-Not
Interest /temp/21°C
Data /temp/21°C [ACK]
Interest /temp/21°C
Data /temp/21°C [ACK]
Interest /temp/21°C
Data /temp/21°C [ACK]

HoPP
Interest /temp
Data /temp 21°C
Properties at a Glance

<table>
<thead>
<tr>
<th></th>
<th>Current IoT Protocols</th>
<th>ICN Protocols</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>GET</td>
<td>CoAP</td>
</tr>
<tr>
<td>Transport</td>
<td>UDP</td>
<td>UDP</td>
</tr>
<tr>
<td>Push</td>
<td>×</td>
<td>✓</td>
</tr>
<tr>
<td>Pull</td>
<td>✓</td>
<td>×</td>
</tr>
<tr>
<td>Pub/Sub</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Flow Control</td>
<td>×</td>
<td>×</td>
</tr>
<tr>
<td>Reliability</td>
<td>(c)</td>
<td>(c)</td>
</tr>
</tbody>
</table>
Experimentation
Implementations

- CoAP: gcoap
- MQTT-SN: asymcute
- On top of UDP/IPv6

- NDN v0.2
- HoPP & I-Not (extensions)
- On top of link layer
Metrics

- Network stack sizes
- Time to content arrival
- Link stress
- Goodput
- Network utilization (control vs data plane)
- Energy consumption
- Security overhead
Metrics

- Network stack sizes
- Time to content arrival
- Link stress
- Goodput
- Network utilization (control vs data plane)
- Energy consumption
- Security overhead
Experiment Setup

IoT-Lab Testbed
ARM Cortex-M3
64 kB RAM & 512 kB ROM
IEEE 802.15.4 radio
CSMA/CA

Retransmissions:
Link layer: 4 × 2–10 ms
Network layer: 4 × 2 s

Single-hop
- 1 gateway + 1 IoT node

Multi-hop
- 1 gateway + 50 IoT nodes
- Max. hop distance: 6
Evaluation
Single-hop: Push vs. Pull

Time to content arrival for scheduled publishing every 50 ms

Push protocols

Pull protocols
Single-hop: Push vs. Pull

Time to content arrival for scheduled publishing every 50 ms

Push protocols

Pull protocols
Single-hop: Push vs. Pull

Time to content arrival for scheduled publishing every 50 ms

Push protocols

- CoAP OBS
- CoAP PUT (n)
- CoAP PUT (c)
- MQTT-SN (Q0)
- MQTT-SN (Q1)

Pull protocols

- CoAP GET (n)
- CoAP GET (c)
Single-hop: Push vs. Pull

Time to content arrival for scheduled publishing every 50 ms

Push protocols

Pull protocols
Single-hop: Push vs. Pull

Takeaways

- Without network layer repair
 - Push protocols complete below 10 ms
 - Pull protocols double completion time

- With network layer repair
 - Reliability layer increases completion time to seconds
 - Retransmissions may induce additional link stress
Single-hop: Push vs. Pull

Time to content arrival for unscheduled publishing every [1 ... 3] s, content request every 1 s

Push protocols

Pull protocols
Single-hop: Push vs. Pull

Time to content arrival for **unscheduled** publishing every [1 ... 3] s, content request every 1 s

Push protocols

Pull protocols
Problem of Stateful Forwarding in NDN

- Interests arrive at higher rate than content
 - Open PIT states accumulate

- PIT size very limited in constrained IoT scenario

- Two possible strategies:
 - Discard newly arriving Interests
 - Overwrite PIT states
 - Leads to delays or loss
Multi-hop: Characteristics

- Radio interference
- Additional link- & network-layer retransmissions
- Higher link stress
Single-hop vs. Multi-hop: Content Arrival

<table>
<thead>
<tr>
<th></th>
<th>Single-hop (50 ms)</th>
<th>Multi-hop (5 s)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unreliable IP</td>
<td>8.0</td>
<td>0.03</td>
</tr>
<tr>
<td>Reliable IP</td>
<td>305.0</td>
<td>3.83</td>
</tr>
<tr>
<td>I-Not</td>
<td>7.2</td>
<td>1.98</td>
</tr>
<tr>
<td>NDN & HoPP</td>
<td>13.6</td>
<td>0.60</td>
</tr>
</tbody>
</table>

Max. Delay

<table>
<thead>
<tr>
<th></th>
<th>Protocol</th>
<th>Max. Delay (ms)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unreliable IP</td>
<td>CoAP PUT (n)</td>
<td>0.2</td>
</tr>
<tr>
<td>Reliable IP</td>
<td>CoAP PUT (c)</td>
<td>16.3</td>
</tr>
<tr>
<td>NDN & HoPP</td>
<td>HoPP</td>
<td>27.9</td>
</tr>
</tbody>
</table>
Single-hop vs. Multi-hop: Content Arrival

<table>
<thead>
<tr>
<th></th>
<th>Single-hop (50 ms)</th>
<th>Multi-hop (5 s)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg. Delay [ms]</td>
<td>Success [%]</td>
</tr>
<tr>
<td>Unreliable IP</td>
<td>8.0</td>
<td>97</td>
</tr>
<tr>
<td>Reliable IP</td>
<td>305.0</td>
<td>99</td>
</tr>
<tr>
<td>I-Not</td>
<td>7.2</td>
<td>100</td>
</tr>
<tr>
<td>NDN & HoPP</td>
<td>13.6</td>
<td>100</td>
</tr>
<tr>
<td></td>
<td>Max. Delay [ms]</td>
<td>Protocol</td>
</tr>
<tr>
<td>Unreliable IP</td>
<td>30.6</td>
<td>CoAP PUT (n)</td>
</tr>
<tr>
<td>Reliable IP</td>
<td>5000.0</td>
<td>CoAP PUT (c)</td>
</tr>
<tr>
<td>NDN & HoPP</td>
<td>27.9</td>
<td>HoPP</td>
</tr>
</tbody>
</table>
Single-hop vs. Multi-hop: Content Arrival

<table>
<thead>
<tr>
<th></th>
<th>Single-hop (50 ms)</th>
<th></th>
<th>Multi-hop (5 s)</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Avg. Delay [ms]</td>
<td>Success [%]</td>
<td>Avg. Delay [s]</td>
<td>Success [%]</td>
</tr>
<tr>
<td>Unreliable IP</td>
<td>8.0</td>
<td>97</td>
<td>0.03</td>
<td>57</td>
</tr>
<tr>
<td>Reliable IP</td>
<td>305.0</td>
<td>99</td>
<td>3.83</td>
<td>78</td>
</tr>
<tr>
<td>I-Not</td>
<td>7.2</td>
<td>100</td>
<td>1.98</td>
<td>68</td>
</tr>
<tr>
<td>NDN & HoPP</td>
<td>13.6</td>
<td>100</td>
<td>0.60</td>
<td>98</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>Max. Delay [ms]</th>
<th>Protocol</th>
<th>Max. Delay [s]</th>
<th>Protocol</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unreliable IP</td>
<td>30.6</td>
<td>CoAP PUT (n)</td>
<td>0.2</td>
<td>CoAP GET (n)</td>
</tr>
<tr>
<td>Reliable IP</td>
<td>5000.0</td>
<td>CoAP PUT (c)</td>
<td>16.3</td>
<td>CoAP PUT (c)</td>
</tr>
<tr>
<td>NDN & HoPP</td>
<td>27.9</td>
<td>HoPP</td>
<td>13.7</td>
<td>HoPP</td>
</tr>
</tbody>
</table>
Multi-hop: Link Stress

Link traversal vs. shortest path using a 15 s publishing interval
Multi-hop: Goodput

Goodput summaries
Multi-hop: Goodput
Goodput summaries for reliable protocols

![Goodput Graphs for NDN, CoAP GET (c), and MQTT-SN (Q1)]
Conclusion & Outlook

Takeaways

▶ All protocols are challenged by the constrained wireless IoT
 ▶ Reliable transfer often fails
 ▶ End-to-end acknowledgments stress lossy links
▶ NDN and HoPP are most robust and stable
 ▶ Hop-wise caching enhances transport efficiency
 ▶ NDN susceptible to PIT state overflow

Future Work

▶ Analyze flow control aspects with controlled cross-traffic
▶ Deploy protocols with full security features enabled