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ABSTRACT
In this paper, we develop a system for inter-server game state
synchronization using the NDN architecture. We use Minecraft as a
real-world example of online games and extend Minecraft’s single-
server architecture to work as multi-server game. In our prototype,
we use two different NDN-based approaches for the dissemination
of game state updates in server clusters. In a naive approach, servers
request game state updates for small segments of the game world
from other servers of the cluster. In an improved approach – the
region manifest approach – servers identify changed parts of the
world by subscribing to manifest files containing information about
world regions managed by the other servers of the cluster. An
apparent downside of the NDN approaches is the high overhead
when handling small-sized game state updates, but our evaluation
shows that NDN already improves on IP-based implementations
regarding the resulting traffic volume when three or more servers
are involved. Furthermore, caused by NDN’s inherent multicast
functionality, the advantage over IP increases with the size of the
server cluster. Moreover, the use of NDN-based approaches leads
to benefits beyond traffic reduction only. The name-based host-
independent access to world regions allows to scale server clusters
easier.

CCS CONCEPTS
• Software and its engineering → Interactive games; • Net-
works→ Network architectures.
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1 INTRODUCTION
During the last decades, the popularity of computer games increased
steadily and now computer games represent a fundamental part
of the entertainment industry. Video game sale revenues reached
43.4 billion USD in the U.S. only in 2018 [2]. Although many games
are played online, the networking part of online games usually
relies on decade old technologies, which were never intended to be
used for gaming and are often part of the cause of overloaded and
crashing game servers during peak hours.

Massive Multiplayer Online Role-Playing Games
(MMORPGs) allow up to thousands of players to play in the same
shared virtual world. Those worlds are often distributed on multiple
servers of a server cluster, because a single server would not be
able to handle the computational load caused by the large number
of players interacting in a huge virtual world. This distribution of
the world on a server cluster requires to synchronize relevant game
state information among the servers. The synchronization requires
every server to send updated game state information to the other
servers in the cluster, resulting in redundantly sent traffic when
utilizing our current IP infrastructure. We assume that efficient mul-
ticasting solutions could reduce the amount of redundant traffic.
Novel information-centric networking (ICN) approaches inherently
support network-level multicast and enable applications to decou-
ple the game state information from the server producing it. This
independence of state from the hosting server leads to additional
advantages reaching beyond simply reducing inefficiencies such as
redundantly sent traffic. For instance, recovery after server failures
or also the possibility to dynamically add or remove game server
instances from the cluster becomes easier when the game state is
associated with a name instead of a specific server instance.

In this paper, we attempt to reduce the inefficiencies of IP-based
inter-server game state synchronization by replacing it with one
utilizing Named Data Networking (NDN) [19], a promising ICN
architecture. We use the open-world game Minecraft to build a pro-
totype and to implement multiple protocols to synchronize game
state in a server cluster. This enables us to compare performance
metrics of IP- and NDN-based inter-server game state synchroniza-
tion approaches, but also to connect real-world game clients to the
prototype and perceive the different synchronization alternatives
from a player’s perspective.

2 RELATEDWORK
The inability of IP-based architectures to efficiently fulfill the net-
working requirements of modern games is discussed and indicated
by the simulation of network traffic of the popular Battle Royale
game Fortnite in [11]. In [12], we analyzed changes in Minecraft’s
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Figure 1: Overview of the envisioned NDN-based distributed
gaming architecture.

game state as well as the network traffic produced during multi-
player gaming sessions and found that a large share of traffic is sent
redundantly. It is assumed that the use of an ICN approach could
efficiently eliminate redundant transmissions caused by IP’s host-
based nature. Chen et al. [3] argue that client-server architectures
for games do not scale in IP; they present a decentralized, content-
oriented publish/subscribe architecture for the transport of game
data, which outperforms an IP-based architecture in simulation and
emulation. Wang et al. [17] create a demonstration showing the
practicability of NDN for games. They apply a sophisticated naming
scheme to request information about objects in the proximity of a
player.

Engelbrecht et al. [5] try to improve networking of IP-based
online games and demonstrate Minecraft as a research platform for
online games. They further show that Minecraft can be adapted to
work as a distributed server architecture.

3 ENVISIONED ARCHITECTURE
Our information-centric architecture for Minecraft includes a client-
server communication and an inter-server synchronization ap-
proach, as visualized in Fig. 1. In this paper we focus on the latter,
using ICN for the synchronization of servers supporting existing
IP clients. The client-server approach motivates our approach to
this synchronization.

Connection-oriented paradigms require clients to connect to a
specific endpoint hosting the required game information. For online
games hosted by a server cluster, this means that a client connects
to a single server, which sends the client all information it needs.
In fact, this single server has no direct access to objects located in
regions of the game world handled by other servers, referred to as
remote regions. This information is only relayed to the server via
inter-server game state synchronization, resulting in higher latency
(respectively stale data) when sending information about remote
regions to clients.

3.1 Game State Synchronization
Most MMORPGs distribute the game world to a server cluster to
overcome a shortage of computational resources. Every server of

the cluster is exclusively managing a specific region of the game
world. Together, the servers of the cluster manage the whole game
world. Thereby the computational load of an individual server
instance is reduced to only managing clients whose avatars are
in the server’s region. The downside of this distribution is the
requirement to synchronize the game state of the diverse regions
among the servers. This is necessary because the border of a server’s
region should not be noticeable for clients.

For synchronization purposes, a server splits all objects in the
game world into primary copies and immutable replicas [18]. Ob-
jects in a server’s own region are handled as primary copies, all
objects in remote regions are handled as immutable replicas. A
server has the exclusive right to change primary copies of objects
and distributes the state of these objects to the other servers of the
cluster. The state of received objects in remote regions, handled as
immutable replicas, is shown to clients, but a server is not allowed
to change the state of those replicas.

Synchronizing the state of the game objects means that the infor-
mation needs to be transferred from the holder of the primary copy
to all other servers of the cluster. In IP-based networks, the informa-
tion is redundantly unicasted to every server. In ICN approaches,
information about game objects gets published to be requested
instead of being sent over connections to individual receivers. This
principle shows a high potential to reduce redundant traffic, when
implemented efficiently. One way to implement inter-server game
state synchronization using ICN protocols is discussed in Section 5.

3.2 Client Communication and Scalability
An additional motivation for this work – yet not dealt with in this
paper – is client communication using ICN and the simplified task
of scaling server clusters. In ICN environments, there is no need for
clients to connect to a specific server instance. Instead, clients issue
requests for the information they need, and no matter which server
hosts the information, the information is delivered. This results in
lower latency, but also in higher availability, because not only a
single server, but every networking component having a copy of
the information is able to answer client requests.

Further, online games underlie continuous load changes caused
by the game taking its course. Player avatars moving through the
game world and traversing regions managed by different servers
could lead to situations where many player avatars are in the same
region. The result is heavy load for a single server while other
servers are almost idle. Moreover, the client’s ability to join or
leave a game at any time results in the number of active players
and thereby the load for the entire server cluster varying over
time. Decoupling game state from the servers managing it allows
easier handling of such load variations. A region not being bound
to a specific server instance allows to move the management of
the region from one server to another and thereby to dynamically
adapt the region sizes of servers. The possibility to adapt server
regions and responsibilities increases the cluster’s scalability and
allows to meet the continuously changing demands of the game.

4 THE MINECRAFT GAME
Minecraft is a 3D sandbox construction game with online multi-
player capability. The game world is procedurally generated and
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players have the means to change every single part of the world.
The game world itself is almost infinite in size and built out of cubic
blocks. These blocks can be destroyed, or they can be placed by
players to create buildings or other structures. In addition to this
building feature, the game mechanics allow to craft different types
of items or to compete against monsters or other players.

One reason for the success of Minecraft is the vibrant commu-
nity effort to improve the game, by means of modifications, and the
permissive stance of Minecraft’s publisher towards those modifica-
tions. This openness allows to modify the network stack, which was
already demonstrated by the work of Engelbrecht et al. [5]. Besides
the possibility to use Minecraft for research on networking, game
elements and mechanics of Minecraft are well-documented [7] and
an extensive protocol specification [8] exists, which eases research
using the game.

4.1 Minecraft’s Game State
Before discussing how online games can be improved, we briefly
describe how they communicate. We take Minecraft as a represen-
tative for online games in general, because it contains many core
concepts of state-of-the-art online games.

A game world in Minecraft is built out of cubic blocks; entities,
such as player avatars and monsters, breathe life into the otherwise
uneventful world. The game state of Minecraft consists of the state
of all blocks and entities existing in a game world. Each block can
be uniquely identified by a coordinate triplet. For more efficient
storage, blocks are organized into groups of 16x16x16 blocks, re-
ferred to as sections. 16 vertically aligned sections make up a chunk.
These chunks are used for storing the structure of the game world
and for transferring it to clients.

4.2 Game Simulation
The game state in computer games changes over time. Games can
be seen as simulations evolving in defined time intervals, referred
to as tick intervals. Events occurring during a tick interval, such as
blocks being broken or monsters moving, are applied to the game
state and result in a new state after the tick interval has elapsed.
In Minecraft, the tick interval is 50 ms, meaning that 20 different
game states are traversed each second.

In order to save computing resources, the simulation of Mine-
craft’s almost infinite world is restricted to the parts of the world
roughly enclosing the Area of Interest (AoI) of players. The world
outside of this simulated area stays in a frozen state, where the
game state stops evolving until the area is vivified due to becoming
part of a player’s AoI again.

5 GAME STATE SYNCHRONIZATION
In distributed online games, the servers of a server cluster cooper-
atively simulate the progression of the game world’s game state.
In order to build a single consistent game state among all servers
of the cluster, the changes to the game state – the game state up-
dates – need to be synchronized among the server instances. Having
knowledge of the game state of remote regions is necessary because
events happening in a region can influence neighboring regions.
So for instance, a growing tree can stretch its branches across the
border of a region, or entities can walk from one region to another.

/<app-pfx>/<game-pfx>/

<chunk-identifier>

<version>

Root element addressing Minecraft as 
application and the specific game instance.

Chunk identifier used to specify 
the chunk in the MC world.

Increasing version number, allowing to 
address the newest version of the chunk data.

<macro-chunk-identifier>
Combines multiple chunk identifiers 
under a common prefix.

Figure 2: Namespace using the macro chunk identifier as hi-
erarchical representation of the game world.

Also, when clients are connected to the server, the server needs to
inform the client what the world looks like and which entities are
in their view distance, even if the view distance extends beyond
the border of the server’s own region.

Building this single consistent game state is achieved by inter-
server game state synchronization. Game state updates of each
server’s region are created and delivered to the other server in-
stances. Each server can then infer the single consistent game state.

The most important requirement of game state synchronization
is consistency, meaning that all servers of the cluster need to have
the same view of the world. An inconsistent game state leads to
the game world looking different on different servers of the cluster.
For players this could mean that blocks or entities are suddenly ap-
pearing or disappearing when the player avatar crosses the border
of a region and would negatively influence user satisfaction.

5.1 Naming the Game Components
In NDN, each piece of information is assigned a hierarchical, system
wide unique name.We designed our namespace to facilitate efficient
forwarding regarding the number of required entries in the NDN
forwarding nodes’ Forwarding Information Bases (FIBs). Utilizing
the fact that NDN Interests are forwarded using longest-prefix
matching, our namespace summarizesmultiple geographically close
chunks under a common prefix. Therefore, we add themacro chunk
identifier as hierarchical representation of the world’s structure.
Instead of registering each chunk in the FIB, only the macro chunk
identifiers summarizing chunks handled by the same server need to
be registered. This leads to a significant reduction of the required
FIB entries for a Minecraft game.

Our namespace design for inter-server game state synchroniza-
tion is visualized in Fig. 2. The app-pfx component specifies Mine-
craft as application, while the game-pfx component uniquely iden-
tifies the targeted game instance. A chunk in Minecraft contains
the full game state of a 16x16 block wide area of the game world.
To infer the game state of the whole game, the game state updates
of every single chunk need to be retrieved. For this purpose, the
chunk identifier, consisting of its X and Z coordinates, is included
in the NDN name.

A version field is used as the last name component to represent
the continuous change of the game state. The version of a chunk
increases for every new game state update. Thereby, it becomes
possible to request a specific, respectively the latest version of a
chunk’s game state.
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5.2 Synchronization and Distribution
User interaction with objects in a chunk results in changes to the
chunk’s game state, which need to be published as a game state
update. The generation of such updates depends on user behavior
and is therefore hard to predict. The central task of inter-server
game state synchronization is to communicate the latest game state
updates of the world chunks in a server’s region to the other servers.
We present two approaches for this update distribution task: a naive
approach with direct chunk-level update retrieval and our region
manifest approach (RMA), where information about the latest world
state is distributed via region-specific manifest files.

Naive approach: The naive solution to implement inter-server
game state synchronization is that every server requests the current
game state updates on a chunk-level granularity directly from the
remote servers by emitting Interests for every remote chunk. Since
large parts of the game world change very infrequently and the
change interval cannot be predicted, Interests for game state up-
dates need to be emitted in regular intervals and would cause a high
number of expiring Interests because no changes have happened.
Long-lived Interests (LLIs)1 could mitigate this issue. The idea is to
issue LLIs for data items with unknown time of generation. When
the LLI reaches the potential producer, it stays pending until the
data is produced or the LLI’s lifetime expires. When the data item is
produced, the Data packet can immediately be sent to the requester
as response to the LLI. In case of an LLI timing out, the requester
needs to re-issue the LLI. In our naive approach servers issue LLIs
for all world chunks in remote regions. When a chunk changes, an
update is produced and immediately sent as reply to the pending
LLI. When the update is received, an LLI for the next update (in-
cremented version field) is emitted. One downside of this approach
is the overhead resulting from issuing Interests for chunks which
change infrequently. The low update rate of those chunks leads to
the LLIs tending to time out without initiating the transmission of
a game state update.

Critically, in NDN pending Interests are soft state; they are sub-
ject to link loss and are not guaranteed to persist in a node for their
specified lifetime. So, not only does the increased lifetime of LLIs
increase resource demands on all networking devices for maintain-
ing the soft-state of pending LLIs, but performance on loss-prone
links and resource-limited nodes could be limited. While loss can
be mitigated by retransmissions of expired Interests when using
Interests with a short lifetime, the long lifetime of LLIs directly
translates to a longer time until packet loss is recognized.

Region manifest approach: Our region manifest approach
(RMA) tackles the downsides of the naive approach by using a
concept similar to NDN-based distributed dataset synchronization
protocols (referred to as sync protocols). Sync protocols distrib-
ute manifest files representing the current state of the distributed
dataset. For instance ChronoSync [21] uses DigestTrees to maintain
dataset changes, PSync [20] utilizes Invertible Bloom Filters to rep-
resent the latest version of data items, and VectorSync [16] encodes
the latest version of data items in State Vectors. The result of using

1LLIs are Interests with lifetime set to a value close to the generation delay of the data
they are requesting. We employ the term when that delay likely exceeds several RTTs
- usually longer than a few seconds.
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Figure 3: Prototype of our game server cluster.

a sync protocol is the knowledge of the dataset’s state, but not the
synchronized data itself.

In RMA, each server generates manifest files containing the latest
versions of the chunks in its own region in constant intervals. Those
manifest files are published under server-specific sync prefixes and
contain information about the server’s region size as well as the
chunk versions of the described region as one-dimensional version
vector. Other servers request the manifest file by Interest/Data ex-
change and use the received chunk version information to identify
changed chunks by comparing the chunk versions of their local
replicas to the versions published in the manifest file. Game state
updates of changed chunks are then requested by Interest/Data ex-
change. This leads to a synchronization latency of roughly 1.5 RTT,
where the delivery of the manifest file requires 0.5 RTT (the mani-
fest can be pre-requested due to constant generation intervals) and
fetching the game state updates takes 1.0 RTT.

Comparing RMA to sync protocols, the main difference is that
in sync protocols multiple parties may publish data, while in RMA
only a single producer is publishing data for a specific region. Fur-
ther differences are the format and the distribution of the manifest
file. While manifest files in ChronoSync and PSync are customized
for each participant, RMA uses one manifest file for all clients
yielding multicasting benefits for manifest file distribution. Unlike
ChronoSync and PSync, the manifest distribution is based on Inter-
est/Data exchange in RMA. ChronoSync and PSync both operate
with LLIs, which might reduce the number of required Interests, but
causes overhead for maintaining a soft state for pending Interests.

6 PROTOTYPE AND EVALUATION
In this section we describe our prototype of a distributed version
of Minecraft and evaluate inter-server game state synchronization.
The prototype mimics a server cluster hosting an online game
in a data center. In the evaluation, we compare our NDN-based
approaches, as described in the previous section, with an IP-based
baseline implementation.

6.1 Multiserver Minecraft Prototype
The components of our prototype and their interplay are shown in
Fig. 3. The prototype is based on the customizable Minecraft server
implementation SpigotMC [15], our Minecraft Cluster Connector
Plugin (MC3P) which detects and encodes game state updates for
chunks in the region of the server, and a network agent synchro-
nizing those updates with the other servers of the cluster.

A topology file informs all components of the prototype about the
region they are managing as well as the regions that are managed by
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other servers. The game simulation on a Minecraft server is limited
to the region it is managing. The MC3P plugin takes snapshots of
the region’s game state in regular intervals, converts them to chunk-
based game state updates and hands them over to the network agent
which publishes these updates for the other servers.

Publishing the full game state in every update would lead to
redundant transmission of information in subsequent packets. This
is why our prototype differentiates between two different game
state update types. An update bundle summarizes all changes to the
game state of a chunk since the start of the game and can be seen
as a checkpoint, because receiving a single update bundle allows
to reconstruct the current game state. Delta updates encode only
the game state changes since the last update (delta update or up-
date bundle); applying delta updates is only meaningful if all delta
updates since the last checkpoint (update bundle or start of the
game) are present. We decided to combine the use of update bun-
dles and delta updates for inter-server game state synchronization.
This combines the advantages of small update sizes during normal
operation and easier consistency recovery after server faults.

The network agents connected to the Minecraft servers are re-
sponsible for the actual inter-server game state synchronization.
The protocol to be used by the network agent is easily configurable;
currently a push-based IP approach, our naive NDN approach, and
RMA are implemented.

A proxy server is used as a gateway, allowing standard Minecraft
clients to connect to the distributed version of Minecraft. The proxy
automatically connects the client to the server which manages the
map region its avatar is located in and migrates the client to another
server if the player avatar moves to a new region.

6.2 Evaluation Setup
As described in Section 3, we expect that an information-centric
inter-server synchronization can reduce inefficiencies found in IP
resulting from redundant unicasts. In this section, we describe a
network emulation using the network emulator Mini-NDN [13] to
measure the potential traffic reduction when using NDN.

The network topology of our emulated server cluster is sketched
in Fig. 3. We emulate a single server environment as well as a
server cluster in a data center with the number of servers hosting
the distributed Minecraft game varying from two to four. A central
NDN-enabled forwarder is connecting all servers of the cluster.
An additional gateway node connected to the central forwarder is
hosting the client proxy and a varying number of Minecraft clients.
In order to emulate realistic player behavior, up to 20 players are
emulated with the Mineflayer client emulator framework [14] and
are configured to follow movement traces of the online multiplayer
game Fortnite, published in [11]. The clients start connecting to the
cluster after initialization of the Minecraft servers and disconnect
when they reach the last waypoint of their movement trace. The
length of the traces varies from a few seconds for some players up to
over 15minutes for others. In addition to the clients walking around,
clients change the structure of the world by placing blocks when
reaching waypoints, and additional movement arises by monsters
wandering through the world.

The Minecraft server cluster is configured to host a flat world, of
which a 96x96 chunks (1536x1536 blocks) large area is managed by
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Figure 4: Emulated client movements and structure of re-
gions with varying server cluster size.

the servers. The equally sized regions managed by the individual
servers are depicted in Fig. 4. Chunk changes of 10 subsequent tick
intervals (500 ms) are combined in a single game state update. Every
tenth game state update of a chunk is realized as update bundle.

In the IP setting, servers push game state updates to all other
servers of the cluster via TCP. For that, the ZeroMQ library [4] in
publish/subscribe mode, where updates are pushed via TCP unicast
messages to all subscribers, is used. In the evaluation, each server
is publishing changes in its own region and is subscribing to the
changes of all other servers in the cluster.

For NDN emulations, the NDN Forwarding Daemon (NFD) [1]
in version 0.6.5 is running on all nodes in default configuration2.
Names are realized as described in Section 5. Macro chunk iden-
tifiers combine 16x16 chunks in an additional hierarchy level, re-
sulting in the managed world being covered by 6x6 macro chunks.
For the naive approach, LLIs have a lifetime uniformly distributed
between 60 and 120 seconds to prevent overloaded links caused
by Interest timeouts. For RMA, the lifetime of Interests is set to
500 ms, which represents 10 tick intervals and manifest files are
compressed with Gzip [9] in fast mode.

The main metric for comparison is the amount of network traffic
produced by game state synchronization. Therefore, network traffic
on all server nodes is captured. We decided not to focus on syn-
chronization latency in this evaluation since the low link latencies
in the server cluster scenario might not influence user behavior
without inducing additional challenges for the network, such as
latency variations or loss.

6.3 Results
The results of our evaluation are visualized in Fig. 5. Traffic volumes
were acquired from the producer perspective. Visualized numbers
for NDN include incoming Interests and outgoing Data on all server
nodes; for IP, outgoing sync traffic on server nodes is shown.

The results indicate clear advantages of IP in the two server
setting, where no benefits of multicasting are possible. NDN per-
formance is impaired by the overhead introduced by Interests as
well as by the larger protocol headers as compared to IP.

In the settings with larger server clusters, the advantages of
NDN come to bear. In the three server setting, as a result of NDN’s
inherent multicast support, we see that the number of Data packets
is already lower for both NDN approaches as compared to the
IP implementation. However, the total number of sent packets is
greater than in IP, caused by NDN’s one-Interest-per-Data principle.
Considering the naive approach, a high number of Interests are

2NFD configuration used for evaluation: forwarding strategy: Best Route; content
store size: 65.536; cache policy: LRU; face protocol: UDP.
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Figure 5: Synchronization traffic on server nodes with vary-
ing number of players and server cluster sizes.

timing out, leading to an even higher number of packets. Despite
the high number of packets, when focusing on the number of sent
bytes in the three server setting, we already see that RMA generates
less traffic than IP. Only in the 20 player evaluation, the amount
of traffic is higher in NDN, caused by the high amount of very
small game state updates, penalizing NDN traffic with a relatively
high overhead. With 20 players, we observed that only 37% of all
captured bytes for the naive approach and 47% for RMA carry
payload. The rest of the traffic results from Interest packets and
Data packet header fields, such as the signature.

Increasing the number of servers, and thereby the number of
required connections for the IP-based implementation, the advan-
tages of NDN become clearer. In the four server setting, the traffic
reduction resulting from multicasts outmatches the overhead in-
duced by Interests and the larger NDN headers. RMA outperforms
the IP version both in number of packets and total traffic volume.

6.4 Discussion
The results show that the inherent multicasting functionality of
NDN helps reduce the traffic resulting from inter-server game state
synchronization, especially in larger server clusters. Our results
confirm our initial assumption that NDN’s multicasting advantages
become clearer at larger server clusters. It was observed that the
traffic reduction was significantly larger in the four server setting
than in the three server setting. We assume larger clusters to benefit
even more, as unicast IP traffic volume is expected to increase
quadratically with the number of server cluster participants, while
NDN traffic volume is expected to increase linearly.

Even though a server cluster topology would allow for using
network level multicast in IP, we point out that reliable multicasts
in IP are not inherently supported [6] and would require additional
middleware. In NDN, reliable multicast is easier to implement, since
consumers simply need to re-issue timed-out Interests in the same
way as they need to do in reliable unicast communication. Hence,
NDN multicast is functioning in non-data center environments as
well, such as in server clusters distributed over a continent.

With respect to the results of the NDN approaches, we see that
RMA results in less traffic than the naive approach regarding the
number of packets and the total traffic volume in bytes. The amount
of Data packets is roughly the same for the naive approach and for
RMA, which is expected because the same game state updates are
generated and distributed in both approaches. Regarding the num-
ber of Interests, RMA only emits Interests for game state updates
of changed chunks resulting in about the same number of issued
Interests as sent Data packets. This number is worse in the naive
approach, where Interests for every single chunk of the game world
are emitted. In our evaluation, where the game world consists of
over 9000 chunks (96x96), more than 9000 LLIs need to be kept
pending for synchronizing the world’s game state. When consid-
ering that our evaluation scenario only covers a small fraction of
a complete map in Minecraft (≈ 3.6×1015 chunks [7]) we see that
direct update retrieval on chunk-level granularity for inter-server
game state synchronization is not scaling well. Focusing on the
traffic volumes in bytes, the reduced number of Interests in RMA
reduces the traffic volume compared to the naive approach.

Nevertheless, the evaluation results for the NDN approaches
show high overhead on packet size, mainly induced by Interests
and by Data packet header fields. The low average Data packet
size resulting from game state synchronization on a per chunk
basis leads to a low payload size vs. header size ratio. In RMA the
overhead could be reduced by decreasing the granularity of game
state update packaging. Instead of sending updates for each world
chunk in a single packet, updates for neighbouring chunks could
be summarized (e.g., updates of 2x2 chunks per packet or multiples
of that) in a single Data packet under a common name. Thereby,
the number of required Interests would decrease while the payload
size of Data packets would increase. Summarizing the game state
updates of too many chunks, however, would require to split the
summarized game state updates into multiple Data packets, leading
again to increased overhead.

7 CONCLUSION AND FUTUREWORK
In this paper, we develop a system for inter-server game state syn-
chronization using the NDN architecture. In our prototype, we use
Minecraft as a real-world example of online games and utilize two
NDN-based approaches for inter-server game state synchronization.
Our evaluation shows that NDN beats IP-based implementations re-
garding the resulting traffic volume when utilizing NDN’s inherent
multicast functionality despite NDN’s higher protocol overhead.

Leaving inter-server game state synchronization aside, the next
step on our roadmap towards information-centric gaming is using
NDN for client-server communication. Reorganizing the game data
requested by clients to take advantage of the semantic richness of
names may enable multicasting benefits also for client-server com-
munication. Besides multicast benefits, NDN-based client-server
communication with its host independence could yield latency re-
ductions and redundancy support as well. When client requests
are forwarded directly to the server simulating the corresponding
region, no indirection via inter-server synchronization as in current
systems would be required.

Source code resulting from this work is published as open-source
software and available in an online repository [10].
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