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ABSTRACT
In Information-Centric Networking (ICN), the ability to cache con-

tent at multiple points in the network is one of the most important

factors in the speed and reliability of content delivery. However, in

the constrained environment of the Internet of Things (IoT), mem-

ory is often a scarce resource, which means that particular focus

needs to be placed on how to use the available memory for caching.

Previous research has shown that caching heuristics that take net-

work topology into account have great promise, but are often not

feasible for use in the IoT as they typically incur high overheads

or require extensive knowledge of the topology. We introduce a

simple content caching strategy called Approximate Betweenness

Centrality (ABC), which makes use of the topology-based heuristics

of existing strategies, but requires no knowledge of the network

and incurs no communications overhead. We compare this new

strategy to several existing ICN caching strategies and evaluate

its effectiveness using real IoT devices in a large physical testbed.

We show that our lightweight approach can deliver results that are

comparable to those of more expensive strategies while incurring

almost no additional costs.

CCS CONCEPTS
•Networks→Networkprotocol design;Network experimen-
tation; Network performance analysis.
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1 INTRODUCTION
Information-Centric Networking (ICN) is a promising future net-

work architecture for the Internet of Things (IoT), as its content-

centric nature is uniquely suited to the nature of typical IoT ap-

plications and its slim network stack [23] means a smaller mem-

ory footprint for the often resource-constrained devices used in

IoT [1, 31, 46].

However, unlike traditional ICN, where network participants

typically have sufficient access to resources such as memory or

processing power and battery life is not an issue, most devices

used in IoT have to contend with severe limitations in this regard.

Therefore, the indiscriminate caching of all incoming content, as is

the default in ICN, is not feasible in this domain. Instead, a number

of strategies have been proposed that aim to decide what content to

cache at which nodes based on various heuristics. While a number

of effective caching strategies for generalised ICN deployments have

been proposed, most still assume a level of resource availability

that is simply unsuitable for the IoT [3–5, 25, 26]. They operate on

the assumption that nodes will have enough memory available to

cache indiscriminately and that there is always sufficient bandwidth

available, neither of which is guaranteed in the IoT. Therefore,

finding caching strategies that take the idiosyncrasies of the IoT

such as constrained devices and limited bandwidth into account is

an ongoing endeavour in information-centric IoT research.

There are several aspects of network performance that can be

improved by employing a suitable caching strategy. Storing cached

copies of popular content at multiple locations in the network can

decrease network load by alleviating the strain on individual con-

tent producers and reducing the number of hops required to reach

a cache hit, and increased redundancy improves network stability

in the case of node failure, unreliable links, or network partition.

However, in this study, we will be mainly focusing on one specific

performance measure: content delivery latency. Many time-critical

IoT applications rely on content being delivered as fast as possible,

and the way in which content is cached throughout the network

can have a significant impact on how quickly relevant information

can be disseminated to where it is required. An effective caching

strategy in this regard is one that minimises the distance between

consumer and producer, and the aim of this study is to develop a

strategy that can achieve this under the constraints imposed by IoT

hardware.

In this study, we will be exploring the effects of the network

topology on what constitutes the ideal caching location (Section 2),

and to that end discuss a pair of caching strategies that aim to

take advantage of topological effects to maximise the benefits of
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in-network caching (Section 3). We then introduce ABC, a novel

caching algorithm that builds on the same centrality concept, but

is specifically geared towards deployment in the IoT and thus has

significantly reduced overhead (Section 4). We evaluate the pro-

posed strategy in comparison with established caching strategies in

an experiment using physical hardware (Section 5), discuss related

work (Section 6), and finally present our conclusions and discuss

potential future work (Section 7).

2 TOPOLOGY EFFECTS
In the real world of IoT deployments, there are as many different

network topologies as there are networks. However, to demonstrate

the effects of topology on caching performance, we will be focusing

on two generalised cases — the core topology and the edge topology
— that are on opposite ends of a spectrum of topology types. There

is no formal definition for either of these topology types, and not

every topology can be clearly classified into one or the other cate-

gory. Rather, we use the terms core topology and edge topology to

describe extreme cases (elaborated below). IoT topologies, while

falling anywhere on the spectrum between these extremes, tend to

resemble one type more strongly than the other. We focus on the

extremes here because if a strategy performs well in both cases, it

is reasonable to assume that it is topology-independent.

Figure 1 shows an example of a core topology. A core topology

is defined by the paths between the producer and the consumers

intersecting closer to the producer (the “core”); each path from the

core outward has only one consumer attached to it at the edge.

In such a topology, the ideal caching location would be close to

the producer, as this would alleviate strain on the producer while

serving the maximum number of consumers with cached copies of

the data (Wang et al. call caching policies that achieve this effect
Type III policies [44]). Conversely, caching close to the consumer

would decrease the content delivery latency for that consumer, but

no other consumer would gain any benefit from the cached copy.

Note that the topology shown here is not the most extreme core

topology possible; that would be a full star topology in which all

paths from the core connect to exactly one edge node. However,

in such a topology, there would be almost no benefit from caching

outside of the producer.

Figure 2 shows an example of an edge topology. In such a topology,
paths intersect near the consumers (the “edge”) rather than the

producer. In other words, multiple leaf nodes tend to share a direct

parent node. This parent node would be an ideal caching location

to serve all leaf nodes connected to it, as this reduces the need

for requests from the edge to be routed all the way to the core (a

Type II policy [44]). Conversely, caching closer to the core would

just alleviate the strain on the producer, with minimal latency

improvements.

Looking at these two cases, it is easy to see that the network

topology has a significant effect on where content should be cached

if latency is to be minimised. For this reason, as we have shown pre-

viously [35], caching strategies that emphasise network topology

have the potential to be more effective than strategies that ignore

the caching nodes’ relative positions in the network.

3 CENTRALITY-BASED CACHING
In this section, we will be discussing a class of ICN caching strate-

gies that use the caching node’s centrality (more specifically, its

betweenness centrality) to decide whether to cache content. Be-

tweenness centrality [45] describes the number of times a given

node lies on one of the paths between all pairs of nodes in the

network. In general, the betweenness centrality CB (v) of a node
v ∈ V , where V is the set of all nodes in the network, is defined as

follows:

CB (v) =
∑

i,v,j ∈V

σi , j (v)

σi , j
, (1)

where σi , j is the total number of paths between two nodes i and
j (i , v , j) and σi , j (v) is the number of paths between i and j
that pass throughv . This definition accounts for the possibility that

there are multiple paths between i and j . However, in ICN, without

loss of generality we assume that the shortest path between i and
j is always used as the content delivery path. Therefore, we can

simplify the definition as follows:

CB (v) =
∑

i,v,j ∈V
σ ′i , j (v) , (2)

where

σ ′i , j (v) =

{
1, if v on path (i, j)

0, otherwise.

(3)

Betweenness centrality has been found to be a useful indicator

of node importance in a network [43]. We can apply this to ICN

caching by arguing that caching at more “important” (i.e.: central)

nodes will be beneficial for caching performance as it increases

reachability of content and thus should increase cache hits and

reduce content delivery latency. This is the motivation for the work

of Chai et al. [15], which we will introduce now.

The basic concept of the centrality caching strategies proposed

by Chai et al. is that when a content chunk is sent from node i to
node j, it shall be cached at the node v with the highest centrality

value CB (v) among all nodes on the path (i, j). This is achieved
in practice by extending all ICN packets to include a field for the

centrality value. Interest packets will then use this field to record

the highest centrality value they encounter en route to their des-

tination. This value is then recorded in the Data packet that is

returned, and a node on the return path caches the Data if and only

if its own centrality is equal to or higher than the centrality value

recorded in the Data packet. This mechanism is illustrated in Algo-

rithm 1. The functions handle_interest() and handle_data()
define the behaviour when a node receives an Interest or Data

packet, respectively. If the incoming Interest can be satisfied locally,

canSatisfy() returns true, otherwise false. Content chunks are
retrieved from the local Content Store (CS) using getData(); and
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Figure 1: Core topology

Producer
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Figure 2: Edge topology

Algorithm 1 Betw/EgoBetw caching decision

1: function handle_interest(Interest)

2: if canSatisfy(Interest) then
3: Data← getData(Interest)

4: Data.Centrality← Interest.Centrality

5: reply(Data)

6: else
7: if myCentrality > Interest.Centrality then
8: Interest.Centrality← myCentrality

9: end if
10: forward(Interest)

11: end if
12: end function
13:

14: function handle_data(Data)

15: if myCentrality ≥ Data.Centrality then
16: cache(Data)

17: end if
18: forward(Data)

19: end function

reply(), forward(), and cache() correspond to the ICN primi-

tives for replying to an Interest with a Data packet, forwarding

packets to the next hop, and caching content.

All centrality caching strategies discussed in this paper use the

same caching mechanism as described above. The difference is in

how they calculate the value for the betweenness centrality that is

used in the caching decision. Chai et al. propose two variants: Betw
and EgoBetw [15].

Betw is a straightforward implementation of the betweenness

centrality measure as described by Wasserman and Faust [45]. Be-

fore nodes begin exchanging Interests and Data, there is a setup

phase in which all nodes are assigned a centrality value using Eq. (2).

The authors do not specify how exactly this setup phase is realised;

in a fully static topology where delivery paths never change, it

may be feasible to simply manually assign the correct centrality

value to every node a priori. However, it is more likely that the

nodes themselves will have to exchange neighbour information in

such a way that every node in the network has full information

about every other node in the network. This implies a significant

overhead, in terms of communications (exchanging all of the neigh-

bour lists), memory (storing neighbour information for the whole

network), computational (converting the neighbour information

into a centrality value), and time (waiting until every node has full

knowledge of the network).

As the complexity of Betw is high along multiple dimensions,

Chai et al. propose a more lightweight alternative called EgoB-
etw. Instead of using global knowledge, this method calculates an

approximation of a node’s centrality value by having it exchange

connectivity information only with its one-hop neighbours. This ap-

proach is based on the concept of ego network betweenness [20]. A

node’s ego network is defined as that node, its one-hop neighbours,

and all links between any of those nodes. A node’s ego betweenness

centrality is thus the number of times it lies on one of the paths

between all pairs of nodes in its ego network. The calculation is the

same as in Eq. (2), except that V denotes the node’s ego network

instead of the whole network. Chai et al. show that a node’s ego

betweenness is a reasonable approximation of the real betweenness

measure.

For both Betw and EgoBetw, if we assume that the centrality

value is to be calculated entirely on the nodes without any a priori
knowledge, each node needs to flood its own Forwarding Infor-

mation Base (FIB) entries to all other nodes in the (ego) network,

which equates to a baseline of at least n broadcast messages, where

n is the number of nodes in the entire network. If we use Betw in a

multi-hop environment, the initial broadcast will not reach every

other node in the network, necessitating further transmissions. In

the worst case, up to n further retransmissions are necessary, thus

placing Betw’s messaging overhead in O
(
n2

)
. In EgoBetw, nodes

only need to exchange and store the neighbour information of their

immediate neighbours. This means that each node only needs to

send one broadcast message; the messaging overhead of EgoBetw
is thus in O (n), where n is the number of nodes in the network.

Since every node requires full knowledge about all pairs of nodes

in the (ego) network to calculate its centrality, thememory overhead

per node is in O
(
n2

)
for Betw and in O

(
d2

)
for EgoBetw, where d

is that node’s degree (d ≤ n − 1).
In order to calculate its centrality value, each node has to check

whether it is on the path between each pair of nodes, thus placing

102



ICN ’19, September 24–26, 2019, Macao, China J. Pfender et al.

the computational complexity in O
(
n2

)
for Betw and in O

(
d2

)
for

EgoBetw.
Further complexity arises if the topology is dynamic, either be-

cause of unstable links resulting in variable delivery paths or be-

cause of mobile participants. In this case, the exchange of neighbour

information needs to be repeated at a frequency that matches the

frequency of changes to the topology, thus incurring further over-

head.

Given the severe limitations of IoT deployments in terms of mem-

ory space and link stability, it is highly questionable whether an

implementation of Betw that carries out the centrality calculations

on the nodes themselves can be realistically considered. EgoBetw
is more feasible thanks to reduced knowledge requirements and

complexity; however, the overhead induced by the exchange of

neighbour information, although only link-local, is still significant,

and especially in a dynamic topology may result in unacceptable

contention of the wireless medium.

4 APPROXIMATE BETWEENNESS
CENTRALITY

Given the fact that, as shown above, Betw and EgoBetw are difficult

or even impossible to implement on IoT hardware, our aim in this

work is to develop a method of determining node centrality that

approximates the results of the existing strategies while subject

to the constraint that it must be feasible to implement and run on

typical IoT hardware with extremely limited memory, bandwidth,

and processing power.

To that end, we now present our new contribution to centrality-

based ICN caching: Approximate Betweenness Centrality (ABC).

ABC handles the caching decision in the same way as Betw and

EgoBetw do (i.e., content is always cached at the nodes with the

highest centrality on the return path) but the centrality calculation

does not incur the communications, storage, and computational

overhead inherent in the other strategies.

4.1 Operation
Instead of relying on a costly setup phase, ABC has each node

approximate its own centrality during runtime using information

carried in the packets they receive. We assume that a prefix owned

by a producer contains some information that uniquely ties it to

that producer. This can take the form of a unique ID, a physical

or logical address, a location identifier, or similar. Furthermore,

we extend Interest packets to carry the unique identifier of the

original requesting node as metadata. The question of whether

the assumption of unique identifiers and the extension of Interest

packets in this fashion are reasonable in information-centric IoT

will be addressed in Section 4.2.

Embedding producer and consumer identifiers in Interest packets

enables each node that handles an Interest to ascertain that it is on

the path between the consumer and the producer of that Interest.

This is equivalent to the knowledge a node in Betw would have

about whether it is on the path between a given pair of nodes.

Every Interest from a new producer and/or to a new consumer

would thereby increase the node’s knowledge about which delivery

paths it is on. Thus, by keeping track of which pairs of nodes it

serves, each node can over time approximate a centrality value for

Algorithm 2 Centrality Approximation

1: function update_centrality(Source, Destination)

2: if (Source,Destination) < myPaths then
3: myPaths← myPaths + (Source,Destination)

4: myCentrality← myCentrality +1

5: end if
6: end function

itself, which will eventually converge to the value that would have

been calculated by Betw/EgoBetw in the setup phase. Of course,

in terms of pure performance, this convergence time represents

a disadvantage as Betw/EgoBetw can make use of fully accurate

centrality values from the start; however, these require an a priori
setup phase that is completely eliminated by ABC.

Algorithm 2 shows how ABC approximates a node’s central-

ity. The update_centrality() function is called at the start of

the handle_interest() function; the rest of the caching logic is
identical to Algorithm 1.

4.2 Analysis
As all information required by ABC is piggy-backed onto the In-

terest packets that are being sent anyway, there is no need for any

additional broadcast messages or any other exchange of informa-

tion. Thus, ABC effectively eliminates the messaging overhead by

reducing it to O (1).

Nodes no longer require knowledge about all pairs of nodes in

the (ego) network; instead, they only need to count the absolute

number of paths they are on. In the worst case (if all paths in

the network were to pass through a given node) this equates to

a memory overhead of O (p), where p is the number of paths in

the network
1
(p ≤ n (n − 1)). In a realistic topology, a node will

only ever be on a subset of paths in the network, and the required

memory is bounded by the number of paths it is on. This means that

edge nodes will use close to no additional memory, while central

nodes may use more. The actual memory overhead observed in our

experiments will be discussed in Section 5.

In ABC, there is no need to compute nodes’ centrality values by

checking their presence or absence on every path in the network.

Instead, nodes simply increment their centrality values whenever

they see a new path in an incoming Interest. The computational

complexity of ABC is therefore O (1).

For ease of comparison, the overheads of Betw, EgoBetw, and
ABC are shown in Table 1.

Section 3 mentions as a compounding problem the issue of dy-

namic topologies. Both Betw and EgoBetw rely on an exchange of

information and subsequent calculation of centralities that is sepa-

rate from regular ICN operations, likely in the form of an a priori
setup phase, and has a static result. This means that this step, along

with the communications and computational overhead it incurs,

would need to be repeated whenever there is a change in topology

(for Betw, the entire network needs to be re-evaluated, while in

EgoBetw this is limited to the ego networks directly affected by the

topology change). Depending on the deployment scenario, changes

1
We assume that a path (i , j) is not necessarily identical to the corresponding path

(j , i) if i , j , since FIB entries are generated independently from one another and

there is no guarantee that they will be symmetrical.
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Strategy Messaging overhead Memory overhead Computational overhead

Betw O
(
n2

)
O

(
n2

)
O

(
n2

)
EgoBetw O (n) O

(
d2

)
O

(
d2

)
ABC O (1) O (p) O (1)

Table 1: Messaging, memory, and computational overheads of the centrality-based caching strategies, where n is the number
of nodes in the network, d is the degree of the caching node, and p is the number of paths in the network

in topology may be frequent. This means that the already signif-

icant overheads of these strategies will grow even further. ABC,

on the other hand, can easily accommodate dynamic topologies by

using time-outs for the information stored on recorded paths. These

time-outs could even be adjusted dynamically according to the fre-

quency of topology changes. Since this mechanism still only uses

information from existing Interest packets, the overheads described

above are not affected by this change.

A further advantage of ABC is ease of implementation. Requiring

only a simple extension of Interest and Data packets by one field and

an additional code block in the Interest handler to count node pairs,

it is uncomplicated to extend an existing ICN deployment to use

ABC. Betw and EgoBetw, on the other hand, require provisioning

for the setup phase (which can not rely on ICN infrastructure)

and, in case computations can not be handled on the nodes due

to hardware constraints, a way to offload the determination of

betweenness values to a central controller.

In Section 4.1, we mentioned that we rely on Interests that clearly

identify both their producer and their consumer. This carries both

a strong assumption (that a singular source exists for each prefix)

and a break in ICN principles (carrying consumer information in

Interest packets), which need to be addressed.

In the domain of information-centric IoT, the assumption of a

single node source for each prefix is not universally true, but also

not unrealistic as nodes in typical IoT deployments usually have

either clearly defined roles (such as being associated with a uniquely

identified sensor/actuator or room) or a defined physical or logical

location identifier. There may be cases in which a prefix is jointly

owned by a group of nodes (e.g. in environmental monitoring where

several nodes may be tied to the same region); however, we would

argue that the operation of ABCwould not be significantly hindered

by this as we could simply treat this group of nodes as one producer

for its path counting purposes.

The break with ICN principles would present a problem if we

wanted to deploy ABC in the wider Internet; however, in the domain

of IoT, we generally assume that our deployment is siloed behind

a gateway, meaning that protocol breaks that are confined to the

deployment are less of an issue. It must however be noted that our

extension would not be able to interoperate with services relying

on anonymity.

Ultimately, ABC’s contribution to centrality-based caching is

simple, comprising only of a way to approximate centrality values,

but it is precisely this simplicity that makes it so promising. It

reduces complexity across several dimensions, including the cost of

implementation, as it simply leverages information from existing

traffic during runtime.

5 EVALUATION
This section presents a comparison of the ABC caching strategy

with a number of other ICN caching strategies. We focus on hop

reduction and latency as our performance metrics, as content deliv-

ery latency is typically the most important factor in time-critical

IoT applications. We also discuss the cache hit rate as this is an

important measure for any caching strategy.

It is important to note that for all metrics evaluated in this section,

ABC is not expected to outperform Betw/EgoBetw directly. In fact,

this would be rather surprising as ABC relies on an inherently

less accurate centrality measure for its caching decision. The goal

of these experiments is to explore whether ABC’s performance is

acceptably close to that of Betw/EgoBetw, which coupled with its

significantly reduced complexity would make it a very promising

candidate for deployment on constrained devices.

5.1 Experiment Setup
In order to compare ABC to the other strategies, we ran a series of

experiments on the FIT IoT-LAB [2] open testbed. As our IoT hard-

ware, we used IoT-LAB’s specially developedM3 node2, which is

a class 2 [9] device that has an STM32 (ARM Cortex M3) microcon-

troller and an Atmel AT86RF231 2.4 GHz transceiver [6]. The M3

node has 64 kB RAM and 512 kB ROM. As firmware for the nodes,

we use a simple RIOT-OS [7] application using CCN-lite3 as the
ICN implementation, modified to support the different caching

strategies.

The experiments were conducted on the Grenoble site4 of the
IoT-LAB testbed. The site features about 380 M3 nodes, which are

distributed across the rooms and corridors of one floor of an office

building. This means that nodes are subject to realistic conditions

found in indoor IoT deployments, such as multipath effects, reflec-

tion, and absorption caused by walls, doors, and windows made of

various materials, as well as unpredictable interference by other

wireless signals and people moving around the building. These con-

ditions mean that data gathered will be very close to what might

be expected in a real-world deployment.

Of the 380 available nodes, each experiment run is conducted

on an arbitrary subset of 50 nodes (chosen randomly each time),

each of which act as producers, consumers, and relays at the same

time. The transmission range of individual nodes is not enough

to reach all other nodes in the building, so communication will be

predominantly multihop. The mean path length is between 3 and 4

hops and the maximum is 6 hops. This kind of multihop setup is

commonly found in the industrial monitoring domain.

2
https://github.com/iot-lab/iot-lab/wiki/Hardware_M3-node

3
https://github.com/cn-uofbasel/ccn-lite

4
https://www.iot-lab.info/deployment/grenoble/
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Cache sizes are kept intentionally small; each node’s cache can

store up to 5 unique content chunks (all content chunks have the

same size). This small cache size was chosen for two reasons. For

one, RAM is extremely limited in IoT devices. The M3 nodes used

in this experiment have 64 kB of RAM. A constant fraction of this

RAM is occupied by the operating system (4.4 kB) and the CCN-

lite network stack (8.7 kB) [23], leaving about 50 kB that have to

be shared between the CCN-lite heap (comprising CS, FIB, and

Pending Interest Table (PIT)), and the actual application running

on top of the network stack. However, these numbers are at the

upper end of typical RAM sizes for class 2 devices. We also need

to consider class 1 devices with RAM in the order of 10 kB [9]. In

these devices, the OS and network stack already need to be pruned

for features, and the remaining CCN-lite heap size will be at most

1 kB [8]. Depending on the nature of the data transmitted by the

application, available cache space may thus be severely limited.

This motivates our decision to limit the number of CS entries in

this way in order to be able to assess expected performance under

these conditions.

The secondary motivation for limiting the number of CS items to

5 is that many adverse effects of ICN content availability could sim-

ply be countered by over-provisioning, i.e. providing more cache

space (if the available RAM allows), thus ensuring content distri-

bution. This means that performance differences between caching

strategies become less pronounced as cache size increases. There-

fore, it is more interesting to look at performance under limited

cache sizes, since this is where differences will be most noticeable.

The experiment is managed by a control script using the IoT-

LAB API, which has access to all node caches, outputs, and inputs.

The API can execute shell commands on individual nodes, which

is used to provide the a priori topology knowledge required by

the Betw/EgoBetw algorithms. This allows us to circumvent the

issues mentioned in Section 3, where we established that the mul-

tiple overheads implied by the need to exchange node neighbour

lists, storing global information about the network in every node,

computing the centrality value at every node, and waiting until

all centrality values have converged would make these approaches

entirely unfeasible for the IoT. Thanks to IoT-LAB, however, we

have access to a controller that has perfect knowledge of the entire

network, allowing us to offload the entire process to more pow-

erful, centralised hardware. Of course, this would not be possible

in a real deployment, but the following evaluation will show that

even under these idealised circumstances, the proposed ABC strat-

egy, which is fully distributed and implemented exclusively on the

nodes themselves, can compete with the algorithms that offload

their calculations.

5.2 Experiment Topologies
We perform our evaluations on two different network topologies:

The core and edge topologies, as introduced in Section 2.

5.2.1 Core Topology. An experiment using the core topology be-

gins with a brief (30 seconds) setup phase, during which every

node advertises its own content prefix (dictated by its address),

which is then propagated through the rest of the network using

HoPP’s [24] routing algorithm. HoPP is primarily a publish-and-

subscribe scheme for information-centric IoT, but also includes a

prefix advertisement mechanism based on the Trickle [29] algo-
rithm. The fact that the routing algorithm is based on Trickle also

means that nodes’ FIBs can be kept up to date during runtime.

The resultant network topology is a direct result of the FIB

contents, which in turn are a direct result of the routing algorithm.

In the HoPP/Trickle routing algorithm, prefix advertisements are

propagated in a tree-like fashion. A producer will advertise its own

prefixes with a rank of 0, which is then increased by each node

that forwards the advertisement. CCN-lite’s forwarding plane is

configured in such a way that for any matching prefix, the FIB

entry with the lowest rank is always preferred. This means that any

multi-hop forwarding path will always minimise the number of

hops to reach the producer. It also means that forwarding paths are

more likely to converge closer to the producer, as the lowest-ranked

nodes will be found there. This means that the resultant topology

is a core topology.

5.2.2 Edge Topology. In the setup phase of an experiment using

the edge topology, each node advertises its own presence to its

neighbours via broadcast. Nodes record every neighbour they can

hear and pass this information on to the IoT-LAB control script.

Because the control script has access to nodes’ physical locations

through the IoT-LAB API, it can use the nodes’ neighbour informa-

tion to construct an edge topology in which the FIB entries for each

content prefix are connected in such a way that delivery paths run

directly from the producer to the most distant consumers, with all

other nodes connected to the most distant connected node they can

hear. Thus, instead of connecting to the neighbour that is closest

to the producer, nodes will tend to connect to the neighbour that

is furthest toward the edge. This means that forwarding paths are

more likely to converge at the edge, where the outermost nodes are

found. Thus, the resultant topology resembles an edge topology.

5.3 Experiment Description
After topology setup is complete, every node will start requesting

content chunks with random IDs in {0, . . . , 49} from each of the

prefixes in its FIB (with 50 producers, there are thus 2500 distinct ob-

jects that can be requested) every 300 to 900 ms. Requested content

IDs follow a uniformly random distribution to model the typical

request distribution found in IoT applications [33, 38]. Interest and

Data packets are handled as specified by the Named Data Network-

ing (NDN) standard. The first time a node receives an Interest for a

content chunk it owns, it produces that content chunk (the actual

payload is irrelevant for our experiment) and sends it back towards

the consumer. Caching of content chunks at intermediate nodes is

dictated by the caching strategy selected for the experiment.

The control script takes periodic snapshots of cache contents

and FIBs and logs statistics such as latency and hop counts. We use

this information to evaluate the caching strategies in the rest of

this section.

In addition to the proposed ABC strategy and the Betw and

EgoBetw strategies introduced in Section 3, we also included two

more strategies in our evaluation: Cache Everything Everywhere

(CEE) [27] and Leave Copy Down (LCD) [28]. CEE is the default

caching strategy assumed in most ICN implementations. We in-

clude it here to show how much there is to gain from employing

a caching heuristic rather than simply caching all content. LCD
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Figure 3: Mean cache hit rate

works by copying a requested content object exactly one hop fur-

ther every time a cache hit occurs, which means that it tends to

keep content very close to the core, and only very popular content

will be moved to the edge of the network. It is included in the

evaluation to showcase a strategy that has very good performance

in one topology type and very poor performance in another, as a

contrast to the centrality-based strategies, whose performance is

expected to be strong regardless of topology.

To showcase the effects of the topology on the caching strategies,

we have split the visualisation of the results into the two topology

types.

5.4 Cache Hit Rate
Although content delivery latency will be our main focus of analysis

for this paper, a basic performance metric that cannot be overlooked

is that of the cache hit rate. Cache hit rate describes the ratio of

content objects that are retrieved as a cached copy from another

node in the network as opposed to being retrieved from the original

producer. In general, a higher cache hit rate is desirable, as it means

that (i) content delivery times are reduced as content requests

are being fulfilled without having to traverse the full path to the

producer and (ii) strain on individual producers is reduced as the

number of requests routed to them goes down, thus increasing

battery life and reducing the probability of dropped packets due to

saturated buffers.

Figure 3 shows the mean cache hit rate for the different strategies

in the two topology types. As has been shown in previous litera-

ture [10, 36, 37], CEE’s cache hit rate barely exceeds 50%, meaning

that almost half of all content requests need to be routed to the

original producer to be fulfilled. As an extreme contrast, LCD can

reach a cache hit rate of over 90% in the core topology. In the edge

topology, on the other hand, it performs even worse than CEE. This

is to be expected: Since LCD keeps content close to the core by

definition, it is much better suited to core topologies than it is to

edge topologies.

The centrality-based strategies perform well across both topolo-

gies, only being outperformed by LCD in the core topology. It is

evident that there is a clear link between the accuracy of the cen-

trality measure and the performance of the caching strategy (since

this is the only difference between the three strategies): The more

information is available to the betweenness calculation, the better

the estimate, which in turn results in better performance. However,

we can also see that even with the rough centrality approximation

provided by ABC, our cache hit rate is only about 10% worse than

that of Betw and still significantly better than LCD in the edge

topology and CEE in both topology types.

The centrality-based strategies perform slightly worse in the

edge topology (by about 5% on average) compared to the core

topology. The reason for this is that a core topology will generally

have a larger number of central, well-connected nodes that make

good candidates for caching data, whereas even well-connected

nodes near the edge can only provide tangible benefits for their

corner of the network. However, the centrality strategies still clearly

outperform CEE in both topology types. The relative performance

between the three strategies stays consistent across topology types.

5.5 Hop Count Reduction
For each Interest, the distance to source is the number of hops

between its origin and the owner of the requested content prefix.

Put simply, it is the number of hops that would be needed to deliver

the content if there were no caches between the producer and the

consumer. We compare this to the hops to hit, which is the actual

number of hops taken by the Interest packet before a cache hit. The

closer a cached copy exists to the consumer, the lower the hops
to hit. The more effective a caching strategy is at storing content,

the more content will be available closer to the consumer. The

difference between the distance to source and the hops to hit is
called the hop count reduction.

The mean hop count reduction for the different strategies is

shown in Figs. 4a and 5a for the core and edge topologies respec-

tively. For both topology types and all caching strategies, there is a

measurable reduction in hops to hit that becomes more pronounced

as the distance to source increases. In other words, the bigger the

distance between the consumer and the content prefix owner, the

more likely it is that the requested content will be found in a cache

in an intermediate node, thus reducing the hops to hit.

As with the cache hit rate as shown in Section 5.4, we can see

that the only strategy that is significantly affected by the topology

type is LCD, which once again is the best-performing strategy in

the core topology, but performs the poorest in the edge topology.
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Figure 4: Performance comparison using core topology
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Figure 5: Performance comparison using edge topology

Clearly, LCD is a strategy that can be highly effective if employed in

the topology it is designed for, but it can not be a universal solution

to the caching problem.

CEE performs adequately; up to a distance to source of 3 hops,

there is no significant hop count reduction, but at larger distances,

the hops to hit even out, meaning that it can generally satisfy

content requests within a reasonable number of hops. This shows

the value of ICN caching even in its most basic state, as the hop

count reduction for larger networks will still be noticeable.

The largest performance gains, however, are achieved by the

centrality-based schemes. Interestingly enough, their hop count

reduction is even stronger at a distance of 4 hops to the producer

than it is at a distance of 3 hops. We attribute this observation

to the fact that these strategies exploit centrality when deciding

cache placement: At a longer distance to source, there are more

potential caching nodes on the path to choose from, and thus a

more optimal cache distribution can be reached. All centrality-

based schemes follow this overall pattern, with variations in how

much they actually reduce the hop count. We can see that in the

core topology, the pattern followed by LCD resembles that of the

centrality approaches — as the caching decisions reached by LCD

in a core topology are very similar to those reached by centrality

strategies — whereas in the edge topology, LCD’s pattern more

closely resembles that of CEE, as it is entirely divorced from this

topology type.

Within the centrality-based schemes, we once again see that

Betw does indeed boast the strongest performance, closely followed

by EgoBetw, and ABC slightly behind the two. This follows our

observations in Section 5.4 and is to be expected; after all, Betw
has knowledge of the entire network topology when making its

decision, and both Betw and EgoBetw can rely on intensive commu-

nications between neighbouring nodes to inform their strategy. It
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is encouraging, then, that ABC, which does not have global knowl-

edge of the network and requires no additional communication

between neighbours, can still achieve results that are comparable

to its more complex relatives and outclass those of CEE and — in

the edge topology — LCD.

5.6 Latency and Latency Reduction
Figures 4b and 5b show the mean content delivery latencies in

relation to the distance to source. It is immediately obvious that the

latencies for the different strategies and topology types follow the

same pattern as the hop counts, which is intuitive as a reduction

in hops to hit should result in a proportional reduction in latency.

However, it is possible for a specific caching strategy to introduce

additional delay through computational overhead, meaning that

a direct correlation between hop count and latency is not guaran-

teed and that there may be latency differences between strategies

that would not be evident from the hop count alone. Our results,

however, show that there is no significant delay introduced by the

different caching strategies. Of course, it needs to be noted here that

as stated in Section 5.1, Betw and EgoBetw were implemented in

such a way that the actual computation of the betweenness measure

is offloaded to the IoT-LAB control script, which runs on conven-

tional server hardware and thus has vastly more resources at its

disposal than the IoT hardware. If these calculations were to run

on the nodes themselves, it is possible that they might introduce a

significant latency to the forwarding process. In order to compare

the strategies in the most favourable terms, however, we decided

to circumvent this possible source of latency.

The most interesting measure when considering novel caching

heuristics is not the latency itself, but the reduction in latency, i.e. the
expected gain in performance when employing the given caching

strategy. We calculate the latency reduction by comparing the mean

latency per distance to source of each strategy to the mean latency

for that number of hops without caching (i.e. the expected latency

without in-network caches). The result, as shown in Figs. 4c and 5c,

is the latency reduction of each caching strategy. Following directly

from the results in Figs. 4a, 4b, 5a and 5b, we can see that the biggest

gains in performance can be seen at a distance to source of 3 to

4 hops. As shown in Section 5.5, LCD, being uniquely suited for

core topologies, already exhibits significant latency reduction at the

lowest hop counts and maintains the strongest reduction overall

in the core topology, whereas in the edge topology, it performs

the same as the other strategies at lower hop counts and is quickly

overtaken by them as hop count grows, achieving only minimal

improvements over latencies without caching. The other strategies

all follow roughly the same pattern, with improvements in latency

being slightly smaller overall in the edge topology compared to the

core topology. The hierarchy between the centrality-based strate-

gies is consistent, but the difference in latency reduction between

the lightweight ABC and the complex Betw is in the range of 10ms ,
a very encouraging result.

5.7 Memory Use of ABC
In Section 4.2 we mentioned that the memory required by nodes

in ABC to store the paths they are on depends on their centrality.

In fact, the number of paths stored in a node is exactly equal to its

centrality. In our experiments, we found that there were only a few

nodes with high centrality values (core nodes in the core topology

and edge nodes in the edge topology), with the upper bound being

around 20 on average for the core topology and 5 on average for

the edge topology, while non-central nodes averaged below 5.

5.8 Convergence Time of ABC
As mentioned in Section 4, ABC eliminates the need for a priori
topology knowledge by approximating nodes’ centralities during

runtime. However, this also means that there is a period of time

after ABC is initialised during which the centrality values will

not be correct. In fact, since all nodes have an initial centrality of

0, ABC will perform identically to CEE until the node centrality

values start to diverge. It is important to examine how long it

takes for the node centrality values to reach a suitable level of

differentiation, and also how long it takes for the values to converge

to a sufficient approximation of the “real” centrality values that

would be calculated by Betw.
In our experiments, it only took an average of between 3 and

5 Interests from each node to form a rough distinction in node

centralities, such that there were only one or two nodes with the

highest centrality value on any given path. On average, it took

approximately 50 s for all nodes in the network to reach a sufficient

approximationCapp of their actual centrality valueCr eal such that��Cr eal −Capp �� ≤ 2.

5.9 Summary of Results
Upon first inspection, the results shown here may not seem partic-

ularly compelling as ABC is never able to outperform the existing

centrality strategies. However, the actual, tangible advantage of

ABC lies in the fact that its complexity, as shown in Section 4.2,

is significantly lower than that of Betw/EgoBetw. This means that

in contrast to those strategies, it is actually a viable candidate for

implementation on constrained devices, and the fact that its results

are not significantly worse than the more complex strategies as

well as being consistent across different topology types provide a

strong motivation for its use.

6 RELATEDWORK
The ICN caching strategies that are most relevant to this study —

i.e., those based on the centrality measure — have already been

introduced in Section 3. The following section will give a brief

overview of a number of other caching strategies that have been

developed for ICN, as well as discuss previous comparative studies.

6.1 Caching Strategies
Since Cache Everything Everywhere (CEE), the default caching

strategy that Content-Centric Networking (CCN) was originally

intended to employ, was found to be suboptimal [10, 36, 37], a

number of alternative strategies have been proposed. Since there

are various performancemetrics that can be improved by employing

different caching strategies, these strategies are very diverse, and

there is no one strategy that is clearly superior to all others in all

aspects of performance.

If the objective of the caching heuristic is to improve cache

diversity in order to be able to store more content copies across
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the network, the family of probabilistic caching strategies may

present solutions. The strategies within this family range from sim-

ple, static-probability strategies [4, 26, 41, 50] to dynamic strategies

that compute a caching probability based on factors such as path

length [36], content freshness [18], content popularity [16] battery

level, cache occupancy, neighbouring cache contents [49], or a com-

bination of some or all of these factors [25]. However, none of these

policies take the topology of the network into account.

We have already introduced a number of policies that utilise

topology in Section 3. Other approaches make use of the concept

of topology potential [40, 51], which describes the effect that a

node exerts on other nodes in the network, which like gravity is

affected by its distance to other nodes. However, like the centrality

approaches, they suffer from their global knowledge requirements

and their inflexibility in the face of dynamic topologies.

Themiddle ground between purely local strategies and those that

require global knowledge is occupied by the family of cooperative
caching strategies. This cooperation can be explicit [32], requiring
some communication overhead between neighbouring nodes, or

implicit [30, 47], using information inherent to the nodes or the

content to achieve cooperation. It could be argued that centrality

strategies use a form of implicit cooperation due to the fact that the

caching decision is based on information provided with the content.

As will be elaborated further in Section 7, it may be feasible to

extend ABC with an explicit cooperation component to enable

off-path caching.

Providing some valuable context for our work, Wang et al. [44]
performed an in-depth analysis of the interactions between network

topology and caching metrics. They show that caching policies are

at their most optimal when content popularity and topology (i.e.,

node betweenness), are strongly correlated. They also provide a

categorisation for caching policies according to where content is

cached (see Section 2).

6.2 Comparative Studies
In the domain of traditional ICN, there are a number of surveys [21,

48, 50] and comparative studies [41, 50] on caching strategies. Stud-

ies that focus specifically on the IoT, however, are not as numerous.

In traditional ICN, the tangible benefits of pervasive caching

have been called into question in favour of simple edge caching [22].

However, IoT differs significantly from the traditional Internet both

in topology as well as traffic patterns (uniform rather than Zipfian),

so these findings are not applicable to the scenarios we studied.

Arshad et al. [4, 5] have contributed a comprehensive overview of

ICN caching schemes for the IoT, but provide no experimental eval-

uation. The first experimental studies in this area were conducted

by Hail et al. [26] and Meddeb et al. [33], who used simulated hard-

ware for their evaluations. The first study to use physical hardware

in a realistic environment was conducted by us [34].

Content delivery latency as a performance metric has been ex-

plored in most of the studies named above and was the focus of

several publications by Carofiglio et al. [11–14]. However, these
solutions are once again not intended to address IoT-specific chal-

lenges. The question of ICN caching latency in the IoT was studied

in detail in our previous work [35].

7 CONCLUSIONS AND FUTUREWORK
We have presented ABC, a simple lightweight caching scheme for

information-centric IoT that uses approximate centrality informa-

tion to cache data in the most convenient location regardless of

topology. We have demonstrated that while this approach does

not outperform existing strategies that make use of more precise

centrality measures, it can provide similar reductions in content

delivery latency without requiring any setup, global knowledge, or

communications overhead.

We have shown that if the network topology is well-known, a

caching strategy specifically designed for that topology may be

the optimal choice for reducing content delivery latency, whereas

centrality-based caching strategies can achieve strong results in

both edge cases examined here, making them a strong choice if the

topology is unknown or mutable.

One potential issue that was not addressed in the main text

relates to the fact that caching strategies in the centrality-based

family, including ABC, inherently place a higher strain on certain,

well-connected nodes, because those are the nodes with the high-

est centrality values and thus the likeliest candidates for caching.

This can potentially cause problems, as well-connected nodes may

already have to contend with above-average load due to the very

fact that they are more central, meaning that more traffic is routed

through them compared to edge nodes. Choosing them as the pre-

ferred caching locations on top of this may exacerbate this effect,

potentially leading to dropped packets as buffers become saturated

or, in the worst case, node failure as batteries drain faster than

those of less-taxed neighbour nodes. How much of an obstacle this

presents in reality will depend on application- and deployment-

specific factors, such as the traffic rate and whether the nodes have

access to a constant power source or easily replaceable batteries.

Although we did not see immediate evidence for such performance

degradation in our experiments so far, a more detailed study of the

relative load placed on different nodes when using centrality-based

caching may shed more light on this issue and perhaps suggest

reasonable upper bounds for how much central nodes should be

preferred before the risks outweigh the benefits.

There is an entire class of ICN caching strategies that could

benefit from the findings in this study: the off-path caching strate-

gies [17, 19, 39, 42]. Off-path caching describes a general caching

philosophy in which content can not only be stored at nodes on

its delivery path, but also offloaded onto neighbouring nodes to

achieve more optimal content distribution. It is conceivable that

combining this approach with the centrality metrics employed here,

we could achieve even better caching performance by offloading

content onto off-path nodes with stronger centrality. Similarly, the

disproportionate load problem described above may be mitigated

by using off-path caching to distribute load more evenly.

In addition to addressing the above issues, future work will aim

to extend the generalisability of the findings presented in this paper.

We will evaluate ABC’s performance under more varied scenarios,

particularly using traffic patterns and topologies from real-world

IoT applications. Furthermore, we plan to run experiments using

larger cache sizes in order to examine how sensitive ABC’s benefits

are to external limitations.
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