
Zenoh:

The Genesis

CEO/CTO

angelo@zettascale.tech

Angelo Corsaro, PhD

mailto:angelo@zettascale.tech

Historical Background

IoT & IIoT

We were involved in building
some of the very first IoT and

IIoT systems

In 2008 we were involved with
the Nice’s Connected
Boulevards, one of the world
first Smart Cities

In 2014 we part for the core
team that build the Fog Platform
for Barcelona

It was
Laborious

Building these systems was
laborious

We had to stitch several
technologies together already
to make data flow end-to-end

We had to stitch a few more to
deal with data storage, etc.

Chaos

The situation was extremely
messy, yet it seamed that
just a few of us where
bothered by it

Everyone was pushing for
the technology they had
adopted or were selling and
ignoring the challenges…

We couldn’t!

Key
Limitations
Back in 2014-2015, the
technologies considered as
“emerging”, such as MQTT,
DDS, etc, were already 10+
years old, and more
importantly had not been
designed to address the
scale nor the heterogeneity
required by IoT and IIoT

Inertia…

Starting from 2015 we tried to
push for a new wire protocol
for the OMG DDS to address
some of its short comings

Most notably its discovery
overhead, and inability to
scale over the Internet, its
wire overhead, footprint, etc…

But inertia prevailed…

A New Beginning
We decided to take up the
challenge to design a new
protocol that could work in
the Cloud-to-Device
continuum

We set us-up for the
additional challenge to unify
data in motion and data at
rest and as a consequence
bring location transparency
to data at rest

Eclipse Zenoh

“Some people want it to happen, some wish it would happen, others make it happen.” – Michael Jordan

Unifies data in motion, data at rest and
computations from embedded
microcontrollers up the data centre

Provides location-transparent
abstractions for high performance pub/
sub and distributed queries across
heterogeneous systems

Provides universal abstractions for
cloud-to-device data-flow programming

Runs Everywhere

Written in Rust for security, safety and performance

Native libraries and API bindings for many programming
languages, e.g., Rust, C/C++, Python, Java, Kotlin

Supports network technologies from transport layer
down-to the data link

Available on embedded and extremely constrained
devices

Data Link

Network

Transport

Physical

Abstractions

Resource. A named data, in other terms a (key, value)
(e.g.	/home/kitchen/sensor/temp,	21.5

	/home/kitchen/sensor/hum,	0.67)

(e.g.	/home/*/sensor/air?co2>12[humidity])

Selector. An expression identifying a set of resources

(e.g.	/home/kitchen/sensor/*
	/home/**/temp

Key expression. An expression identifying a set of keys

Abstractions

Publisher. A spring of values for a key expression

Subscriber. A sink of values for a key expression

Queryable. A well of values for a key expression

(e.g.	/home/kitchen/sensor/temp
/home/kitchen/sensor/*)

(e.g.	/home/kitchen/sensor/temp
/home/kitchen/sensor/*)

(e.g.	/home/**)

Primitives
open/close — Open/Close a zenoh session.

declare_subscriber — Declares a subscriber with a user provided call-
back that will be triggered when data is available.

declare_publisher — Declares a publisher and optimise the
communication stack for repetitive publications. Notice that Zenoh
does not require a publisher in order to perform publications, this is just
an optimisation.

declare_queryable — Declares a queryable with a user provided call-
back that will be triggered whenever a query needs to be answered.

Primitives

put — puts a value for a key expression.

pull — Pulls data for a pull subscriber.

get — Issues a distributed query and returns a stream of
results. The query target, coverage and consolidation depends
on policies.

Scouting

Zenoh supports pluggable scouting protocols as a way to “discover”
zenoh runtimes on the network as well as infrastructural nodes, such
as routers

At an API level a scout primitive is exposed to trigger scouting

The scouting protocol leveraged by zenoh depends on the underlying
network

Any Topology

Peer-to-peer

Clique and mesh topologies

Brokered

Clients communicate through a

router or a peer

Routed

Routers forward data to and

from peers and clients
Clique

Mesh

Router

Router

Router

Router

Peer

Peer

Peer

PeerPeer

Peer

Peer Peer

PeerClient

Client

Client

Client

Brokered

Routed

Lorem ipsum dolor sit amet

Extensible

SSE

…

Zenoh Plugins

Ease integration of other technologies

…

High throughput (4M msg/s — +40Gb/s)

Low latency (35 us)

Minimal wire overhead of 4-6 bytes

Performance

Test run on 10/07/2021 on

Ubuntu 20.04

AMD Ryzen

32GB RAM

100Gbps ETH

Pub Sub

Host Host

“One of the things I love about music is live performance.” - Yo-Yo Ma

Throughput in
perspective…

Pub SubRtr

Th
ro

ug
hp

ut
 (

M
b

it
/s

)

0

5 000

10 000

15 000

20 000

25 000

30 000

35 000

40 000

45 000

50 000

Payload size (Bytes)

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8
65

53
6

m
sg

/s

0

500000

1000000

1500000

2000000

2500000

Payload size (Bytes)

8 16 32 64 12
8

25
6

51
2

10
24

20
48

40
96

81
92

16
38

4
32

76
8

65
53

6

MQTT ZENOH

"Harder, Better, Faster, Stronger.” - Daft Punk

Zenoh is far more performant than MQTT  

Test run on 02/03/2022 on

Ubuntu 20.04

AMD Ryzen

32GB RAM

Localhost

Bandwidth efficiency
in perspective…

By
te

s

0

100

200

300

400

500

600

700

Open

Disc
ove

ry

Data
 O

ve
rhea

d

Kee
p Aliv

e
Close

DDS-XRCE MQTT Zenoh

Zenoh is far more effi
fi
ffi

“Even the largest avalanche is triggered by small things.” - Vernor Vinge

Test run on 22/02/2022 on

Ubuntu 20.04

AMD Ryzen

32GB RAM

Localhost

Pub SubRtr

Zenoh-pico reel_board
(Zephyr)

nucleo-f767zi
(Zephyr)

ESP32-D0WDQ6
(Arduino)

Build-in Flash 1 MiB 2 MiB 4 MiB

Empty Binary 68166 bytes 127344 bytes 385859 bytes

Zenoh Publisher 164654 bytes 186942 bytes 423161 bytes

Test run on 21/09/2021 on

Zenoh-pico

Various platforms

10Mbps ETH

Pub SubRtr

Microcontroller Host

Performance in
microcontrollers

“Even the largest avalanche is triggered by small things.” - Vernor Vinge

Protocol Highlights

Most wire/power/memory efficient protocol in the market to
provide connectivity to extremely constrained targets

Supports push and pull pub/sub along with distributed queries

Resource keys are represented as integers on the wire, these
integer are local to a session => good for wire efficiency

Supports for peer-to-peer and routed communication.

Support for zero-copy.

Ordered reliable data delivery and fragmentation.

Minimal wire overhead for user data is 4-6 bytes

Data Link

Network

Transport

Physical

In Summary

Final Thoughts

Zenoh was designed
ground up to deal with data
management from the
Cloud-to-thing continuum

It unifies data at in
movement and data at rest

It delivers incredible
performances and can run
on just about anything

