zetta
scale

‘m-, --~

/ "/?,;’A

Angelo Corsaro




Why Rust?




Productivity

We find that Rust is an
extremely productive
system programming
language

It has a learning, curve, but
once that is passed, we see
much better productivity
when compared to C/C++

zetta
) scale




Asynchronous
Programming

We leverage heavily Rust
support for Asynchronous
programming for both I/0
(networking code) as well
as API

This makes it easier to
write concurrent code that
has no (or limited)
inversion of control

zetta
) scale



zetta

@Rust

Memory and concurrency safe programming language => Safe and Secure
High-level abstractions => Productive
/ero-Cost Abstractions => High Performance

Built-in Support for Asynchronous Programming => Great for Network
Programming



High Performance with Rust




zetta
) scadle

Usual Recommendations




zetta
) scale

Concurrency

One OS-level thread per core
Limit / Avoid locking

Limit / Avoid Context Switches (especially of OS Threads)



zetta
) scale

Memory

Avoid/limit dynamic memory allocation on the critical path

Use data structures that are cache affine, especially on your critical
path (e.g. favour contiguous data structures implementations)



zetta
) scale

Measure don’t Guess

Systematically measure performance

Great tools such as Criterion are available

Build performance tests that are relevant for your application
Look at the raw data and do proper statistics on it

Profile your code (perf, vtune, etc)


https://github.com/bheisler/criterion.rs

zetta
) scale

Avoid Surprises




zetta
) scale

Key Libraries

When choosing a library, make sure you evaluate it

Don’t just pick a library because everyone else is using it,
perhaps they have different needs than you



zetta
) scadle

Rust Async Libraries




Popularity vs
Performance

Today Tokio seems to be the
dominant asynchronous
framework

— async-std
transport

n
O
-
o
)
Q
2
o

Yet, is severely
underperforms when
compared to async-std

Messages per seconds (msqg/s)




Impact of
Async Tasks

Tokio performance get even
worse as the number of tasks in
a runtime increases




zetta
scdale

Tokio vs
async-std

The situation is getting rather
complicated as more and more
library adopt Tokio, perhaps
because everyone else uses it..

Yet its performance are not at
the point and additionally it
creates issues of resource
usage when mixed with async
-std




Async & Your Stack




Asynchronous
Programming

Hard to profile performance

The impact on the stack size
can seriously hit performance

Measure and profile the size
of your futures as well as the
impact of nested call... It can
kill your performances!

zetta
) scale



zetta
) scadle

Concluding Remarks




Step after
Step

The path to performance is
all about a disciplined step
after step journey

Many of the tricks are the
same that apply to C/C++

Rust has some specials, and
great attentions should be
used with aynch/futures

~— zetta
scdale




