
Co-Design Patterns for Embedded Network Management
Dominique Dudkowski

NEC Laboratories Europe, Network Research Division
Heidelberg, Germany

dudkowski@nw.neclab.eu

ABSTRACT

Designing and operating large-scale management systems
has become extremely challenging due to the growing
complexity of network technologies and networked service
infrastructures. Both knowledge and functionality for
performing management tasks are typically shared between
service and management realms. However, current
management practices do not adequately address this
situation, and management functions are added only after
services are deployed. In this paper, we introduce co-design
patterns to embedded network management and show how
they allow for a more structured design of recurring
management tasks. Using a distributed fault management
scenario we demonstrate how co-design patterns facilitate
the interworking of service and management processes that
share knowledge and functionality to handle faults
collaboratively. We further show that applying co-design
patterns results in significant improvement in the runtime
performance of embedded management processes.

Categories and Subject Descriptors

C.2.3 [Computer-Communication Networks]: Network
Operations – network management. D.3 [Programming

Languages]: Language constructs and features – patterns.

General Terms

Design, Management, Performance, Languages.

Keywords

Future Internet management, co-design patterns, embedded
network management, distributed fault management.

1. INTRODUCTION
Current network and service infrastructures are complex
and heterogeneous large-scale deployments, provided by a
multitude of stakeholders and deployed dynamically. This
situation has made the provisioning of carrier-grade
networked systems a challenging task for operations and
management. To this day, many solutions are add-on, that
is, management functions are attached only after networks

and services are deployed. Technologies based on SNMP,
for instance, provide a generic approach to interface data
plane and management plane, but will not be able to cope
with future network architectures in the long run, one
reason being the separation of management and service
plane at operation time, let alone at design time.

In designing complex communication systems, a number of
principles have been previously applied with great success,
such as modularity, layering, hierarchies, and various forms
of interaction (e.g. cross-layering). Complementary, design
patterns have emerged to facilitate the implementation of
large software systems [1, 2]. Some principles and patterns
have received great attention in future Internet research,
where new design methodologies are explored that model
the complete development cycle from the design to the
deployment of whole communication networks [3]. While
some principles are common practice today also in network
management, such as SNMP’s hierarchical management
structures, lack of support for the structured design of
embedded management processes persists. We argue in [4]
that integrative aspects of management and service realms
should be exploited in the design of management solutions,
because in a large number of cases, both knowledge and
functions for realizing management tasks are shared
between both realms. Current principles do not sufficiently
assist in this intrinsic design problem, which requires
considering design patterns at a finer level of detail.

To this end, we introduce co-design patterns to network
management that support the design of embedded,
distributed, and large-scale management systems. We
propose a first set of such patterns (Sec. 2) that we have
derived from typical distributed management problems and
which are suitable for modeling cooperative aspects of
embedded management and service processes. We show by
applying a subset of the proposed patterns to a fault
management scenario (Sec. 3) how a simple but complete
management control loop can be constructed by combining
the knowledge and functions required for fault handling
from both service and management logic. The scenario
illustrates particularly well how a deliberate selection of co-
design patterns avoids the duplication of functions on the
side of management processes. We further evaluate the
scenario analytically (Sec. 4) and show how the application
of co-design patterns translates into significant performance
gains during runtime, in contrast to a more traditional
realization of the same scenario. Finally, we briefly discuss
related work (Sec. 5) and conclude in Sec. 6.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that
copies bear this notice and the full citation on the first page. To copy
otherwise, or republish, to post on servers or to redistribute to lists,
requires prior specific permission and/or a fee.
ReArch’09, December 1, 2009, Rome, Italy.

Copyright 2009 ACM 978-1-60558-749-3/09/12...$10.00.

61

2. CO-DESIGN PATTERNS
The concept of co-design originates from the observation
that knowledge and functionality about how to manage a
system is typically split between multiple roles involved in
the operation and management of the target system. For
instance, service designers and network operators may each
not only know how to manage different aspects of a
service, but also how to provide the functions that
implement different parts of the overall management tasks.
Co-design patterns proactively support the exploitation of
synergies between such parties: they represent a set of

structural blueprints of how to construct parts of a

management system by combining knowledge and

functionality of different parties to facilitate the reuse of
existing functionality, to simplify management function
design, and to increase system performance.

2.1 Embedded Network Management
Co-design patterns are applicable in the context of
embedded network management where management
functions are co-located with service functions. Figure 1
illustrates the concept of in-network management (INM),
an approach to embedding management functions inside of
network elements (network nodes) [4].

Figure 1. INM-compliant node structure (left) and
distributed fault management control loop (right).

Figure 1 (left) sketches the structure of a network node,
where functional components integrate both service and
management logic into a single coherent, deployable entity.
Management functions are invoked by calls to management
capabilities, which implement algorithms that realize the
management functions, such as fault handling. Typically, a
management control loop is formed by multiple interacting
management capabilities of functional components that
span several nodes in a communication network (Figure 1
(right)). Invocation of management capabilities by service
processes and vice versa is performed, for instance, by
function calls, and control between both sides is transferred
accordingly. Supporting in the design of interactions
between embedded management and service processes is
the objective of the proposed co-design patterns.

2.2 An Initial Set of Co-Design Patterns
We propose an initial nonexhaustive set of co-design
patterns for embedded network management that model
typical recurring problems in the fine-granular interactions
between management and service functions. For each
pattern, a formal representation defines the interactions

between service processes S and management processes M.
Arrows indicate the process spaces crossed, e.g. S � M
denotes the traversal from service process to management
process space. M+ denotes multiple sequential and Mn
multiple concurrent invocations of management capabilities
within the management process space.

Control handover (S � M or M � S): This basic co-design
pattern makes explicit that control is handed between
service process and management process in either direction.
This pattern separates both spaces in functional terms and
helps in understanding the separation of concerns in the
design phase of complex management systems involving
many functional components and network elements. This
pattern applies, for example, to the situation of a service-
side security exception that leads to the invocation of a
security-related management capability.

Informed handover (S � M or M � S): This variation of
the control handover pattern uses additional information to
indicate that the invoked management capability (function)
is to be executed with certain constraints. Typically,
constraints relate to performance and security, e.g. the
maximum delay that only nodes within a network cluster
must report on a management-related query. This pattern
makes explicit the knowledge shared between service and
management side, such that both sides can agree on this
knowledge and are able to continue concurrent operation
with the same assumptions. An example application of this
pattern is the invocation of a management capability by a
service process with specific timing requirements.

Predicate (S � M): This pattern provides defined means to
evaluate a condition (predicate) on the management side
where the knowledge about the condition is provided by the
service side. Such situations typically occur in managing
faults that can be described by service-specific properties,
such as the reception of a sequence of messages that is not
allowed in the case of non-faulty operation of the service.
Together with a predicate, the information required to
evaluate the predicate is handed to the management side for
evaluation. By definition, if the predicate evaluates to false,
control returns to the service process, otherwise control is
resumed on the management side. Hence, the predicate
pattern can be viewed as a conditional version of the
control handover, and it can be combined with the informed
handover. An example application of this pattern is the
definition of a fault situation in the form of a predicate that
is evaluated by the management side.

Control split (S � Mn) and control join (Mn � S): These
patterns are inspired by multithreading environments. The
control split pattern extends the control pattern by
transferring control to multiple management capabilities
that each execute their own thread of control on the
management side. Conversely, the control join pattern
defines a synchronization point for multiple control threads
executed on the management side such that after the joining
of threads, control continues within a single functional

functional
component

Service
Processes

Embedded
Management

Processes

co-located
management /
service process

functions

internal mgmt IF

external
mgmt IF

management
capability

service-side
capabilities

service IF

fault
management
control loop

1. fault
detection

3. fault recovery
(initiating node)

2. fault
indication

62

component on the service side. While both patterns provide
a structured way for creating multiple management control
threads, it is the responsibility of the implementation to
terminate threads appropriately at a single functional
component. Both patterns can be applied, for instance, to
execute multiple management capabilities concurrently for
the purpose of distributed SLA enforcement, and to
synchronize again before returning to the service side.

Control tunnel (S � M+ � S): This pattern enables a
service to specify a state that is transferred via a “tunnel”
while a sequence of management capabilities are executed
on the management side, until it is injected back into the
service process that is called by the last management
capability in that sequence. This pattern is applicable in
situations where service-side functions need the support of
intermediary management functions, e.g. to take advantage
of more robust or secure mechanisms. As an extension, the
state may be modified by the management side to consider
decisions that are based on the specific knowledge of a
management process. A typical application of this pattern is
for a service to select another service’s function to be
invoked after the traversal of the management side.

3. CO-DESIGN PATTERN APPLICATION
Let us now demonstrate how co-design patterns can be
applied in a distributed fault management scenario. Without
loss of generality, we consider a mobile ad-hoc network
(MANET) that is prone to network partitions. The
following arguments are equally valid for other types of
networks, e.g. peer-to-peer networks in which a disruption
in the overlay may lead to overlay network partitions.

3.1 Distributed Fault Management Scenario
We assume a MANET formed by mobile devices (e.g. in an
urban environment) that establish mutual communication
links when entering each others’ communication range
(Figure 2 (left)). Client nodes query a distributed storage
service (cf. [5]) to retrieve data items from light-weight
data servers. Each server stores information about data
items located in the vicinity of a geographic reference
point. Appropriate geometric routing protocols ensure that
queries are routed via intermediary nodes to the data
servers storing the data items requested by client nodes.

Figure 2. Distributed fault management scenario. Left:
storage service operation under normal conditions. Middle:
occurrence of a network partition during data migration.
Right: joining network partitions and fault detection.

Because data servers are also mobile, a vital part of the
service infrastructure is a server advertisement process
implemented by servers to advertise their presence in the
network so they can be located during query routing. Each
advertisement is propagated within a limited scope and
deposits a number of server records at intermediary nodes.
Due to a server’s mobility, it will eventually require to
hand over its stored data to an alternative node, which will
become the new server. This process of data migration (cf.
[6]) assures that data is maintained close to the reference
point for queries to be always processed efficiently.

Figure 2 (middle) shows the situation where the previously
initiated data migration process faces the occurrence of a
network partition due to node movement. Communication
theory dictates that interrupted migration processes cannot
be consistently rolled back in cases where a migration is
about to complete but final acknowledgements are pending
delivery. As a consequence, two redundant servers remain
that handle the same data. In a network where nodes move
autonomously, partitions will eventually join, allowing the
two servers’ data subsets to be merged. In Figure 2 (right),
advertisements from both servers, N1 and N2, coincide at
N3, a fact that can be exploited in fault detection.

3.2 Scenario Analysis and Co-Design
The described scenario yields the management control loop
shown in Figure 1 (right) comprising a fault detection, fault
indication, and fault recovery phase. Regarding fault
detection, the knowledge that is required to define the fault
is on the service side, that is, the advertisement process.
Specifically, the reception of advertisement messages from
two different servers that are responsible for storing data of
the same reference point uniquely characterizes a server
redundancy. This suggests to apply the predicate pattern, as
illustrated in Figure 3 (left). Incoming messages on the
service side are handed over to the management side by an
efficient function call with the predicate that specifies the
fault and which is evaluated by the invoked management
capability. Once the predicate evaluates to true, control
flow continues on the management side and on the service
side otherwise. While the predicate evaluation logic can be
implemented on the service side, the pattern-based solution
is more elegant and allows for much more flexibility. For
instance, the management capability implementing the
predicate evaluation can be reused by other service
processes, or even be relocated within the node or to other
nodes if this is required in a particular scenario.

In case of a true predicate, control continues on the
management side (fault indication). In our scenario, the
management side implements a robust protocol that ensures
the delivery of the fault indication to a data server. Once
the fault indication is received by the server, our
implementation supports the parameterization of data
migration in such a way that a data merge, which is
functionally very similar to a migration, is performed
instead of a migration. The control tunnel pattern can be

N3
N1

N2

N3
N1

N2

data server: operational

data server: designated

node storing server record of N1

N1

N2

node storing server record of N2

server advertisement message

data migration message

redundancy detection message

storage reference point client query messageclient node

N3

detection of redundancy at N3network partitioning occursnormal operation (no fault)

63

applied in this situation (Figure 3 (right)), because it allows
to specify a state that is tunneled through the management
side during fault indication. In the example, the state
corresponds to an algorithm selection, that is, to perform a
data merge. The application of the control tunnel pattern
demonstrates how the management side does not have to
implement its own recovery mechanism, but can rely on the
service side’s provided modified migration mechanism.

Figure 3. Application of the predicate (left) and control
tunnel co-design pattern (right).

The application of both patterns shows that despite the tight
integration of service and management processes, it is
possible to maintain functional separation that facilitates
function reuse. Co-design patterns moreover enable the
construction of flexible control loops whose individual
algorithm and protocol components can be modified and
exchanged when required. For instance, it is possible to
adapt the fault indication mechanism on the management
side without impacting other parts of the control loop.
While we have illustrated the use of two of the proposed
design patterns only, our implementation also makes use of
concurrent control tunnels that can be modeled using the
control split and join pattern, which underpins the power of
using multiple co-design patterns in combination.

4. EVALUATION
To demonstrate the performance gains of our co-designed
embedded management solution we combine simulation-
based and analytical modeling: Using the ns-2 simulator,
we have implemented a complete data migration suite in
MANETs from which we obtain basic MANET-specific
performance characteristics. We then use an analytical
model to validate the performance of the co-designed
solution. The simulation scenario extends over a geometric
region of 600 · 600 m2, populated with 150 nodes each with
a communication range of 100 m. Nodes move with a
constant speed of 15 m/s and fixed pause time of 30 s
according to the random waypoint mobility model. The
geometric region is subdivided into cells of 200 · 200 m2, a
total of 9 data servers each stores 320 kB of data to be
migrated when a server leaves its associated cell.

Table 1 summarizes basic numerical results that we have
extracted from simulations of the above scenario and which
we require for the subsequent analyses. The migration
failure probability specifies with which probability an
initiated migration fails and leads to a server redundancy.

The migration duration is the total time from initiating a
migration at the source data server to completing it at the
designated server. The one-hop packet delay represents a
typical delay that a packet takes between adjacent nodes,
including all contributions such as transmission and
queuing delays. The detector-server hop distance is a
representative number of hops that is required for sending a
fault indication from the fault-detecting node to the fault-
handling data server. Finally, the migration cost are the
approximate number of packets required to transfer a
server’s stored data to the designated one.

Parameter and Symbol Magnitude (typical)

Migration failure probability pfail 1/121

Migration duration ∆tmig 2.65 seconds

One-hop packet delay ∆thop 3.5 ms

Detector-server hop distance nhops 3

Migration cost Nmig 600 (default)

Table 1. Basic simulation-based numerical results.

The total fault recovery time, ∆trecovery, is the time required
to process the complete control loop as illustrated in Figure
3 (right) and takes the general form

∆trecovery = ∆tdetection + ∆tindication + ∆thandling (1)

In the co-designed solution, a fault is detected after the

duration of the involved network partition, ∆tpart, and the
time required for concurrently sending advertisement
messages from two servers to a detecting node, hence

∆tdetection = ∆tpart + nhops · ∆thop. Value ∆tpart depends on the
movement of network nodes and we will use it as a
dynamic performance parameter in the evaluation later on.
A fault indication is propagated the same distance in

inverse direction and requires time ∆tindication = nhops · ∆thop.
The duration of fault handling is identical to the migration
duration (cf. Table 2). The total fault recovery time,

∆�recovery
co , as a function of partition duration is:

∆�recovery
co ≈ ∆tpart + ∆tmig + 21 ms (2)

In the non-co-designed solution, no synergies between
service and management processes are exploited. We
assume in this case a single stationary management node
located in the center of the scenario region that queries the
status of all reachable nodes in the network in time

intervals ∆tcheck by a flooding-based broadcast. Server
replies are aggregated by the management node, which in
turn determine pairs of redundant servers. As in the co-
designed solution, redundant servers are reachable and the
fault can be handled right away. Because a fault can be
detected for the first time only after partitions have joined

again, fault detection requires at least ∆tpart. Since a check is

performed only every ∆tcheck, an additional 0.5 · ∆tcheck is
added to the fault detection time. Further, the duration of
the aggregation phase depends on twice the network radius,

which is √	. With the one-hop delay ∆thop, the mean fault

detection time is ∆tdetection = ∆tpart + 0.5 · ∆tcheck + √	 · ∆thop.

management
capability:
predicate
evaluation

�
true

�

further
processing

false

synchronous
call

incoming
messages

mgmt side service side 2. fault
indication

N3 N1

control information: target algorithm
and algorithm parameterization

control tunnel

3. fault
recovery

1. fault
detection

...

64

A fault indication crosses half the radius of the network in

the mean, hence ∆tindication = 0.25 · √	 · ∆thop. Finally, fault
handling time is identical to the duration of the migration
process in the co-designed solution. The total fault recovery

time, ∆�recovery
non-co

, sums up to:

∆�recovery
non-co

 ≈ ∆tpart + 0.5∆tcheck + 4.37 √	 ms + ∆tmig (3)

We further consider the communication cost for executing
the management control loop. Because the co-designed and
non-co-designed solution use different schemes, it is
convenient to quantify cost, C, in number of packets per
unit time. For the control loop we can state:

Crecovery = Cdetection + Cindication + Chandling (4)

Let fmig denote the migration frequency, that is, the number
of migrations occurring in the scenario every second. With
the migration failure probability from Table 2, the expected
failures per second are fmig · pfail.

In the co-designed solution, advertisement messages
received by each node are part of the service side, hence,
they do not incur additional management overhead and
thus, Cdetection = 0. Fault indication requires the traversal of
nhops = 3 hops and fault handling is equal to the migration
cost Nmig (cf. Table 2). Hence:

�recovery
co
 (nhops + Nmig) · fmig · pfail (5)

In the non-co-designed solution, fault detection requires the
utilization of explicit messages because no “free” messages

on the service side can be exploited. After each ∆tcheck, the
aggregation phase requires n flooding packets.
Additionally, up to N servers each respond with a mean
communication cost that corresponds to half the radius of

the network, that is, 0.25 √	. Hence, the total cost is 0.25 N

· √	, and the fault detection packet rate is Cdetection = (n +

0.25 N · √) / ∆tcheck. Each detected fault is handled by
sending messages concurrently from the management node
to all redundant servers. This requires approximately the
mean distance from the management station to half the

perimeter of the region, that is, 0.25 √	 hops. Because it
does not matter whether faults are handled in a batch after

∆tcheck or distributed equally over time as in the co-designed
solution, the fault indication cost can be stated right away

as Cindication = 0.25 √	 · fmig · pfail. Similarly, fault handling
cost are aggregated instead of equally distributed, and

become Chandling Nmig · fmig · pfail. The total recovery cost
rate for the non-co-designed case sum up to:

 �recovery
non-co
 (n + 0.25 N · √) / ∆tcheck +

 0.25 √	 · fmig · pfail + Nmig · fmig · pfail
(6)

Figure 4 and 5 visualize the derived equations. The mean
fault recovery time is shown in Figure 4 as a function of the
checking interval. Three partition duration intervals are
shown, fmig is set to 1/s for all graphs displayed. The co-
designed solution clearly outperforms the non-co-designed
one in every case.

Figure 5 presents three graphs that show the
communication cost required for fault recovery for three
different settings of the number of migration packets. In all
cases, the co-designed solution has again superior
performance over the non-co-designed solution. What’s
more, choosing small checking intervals is not supported
by this figure due to the significant increase in
communication cost (note the logarithmic scale on the y-
axis). Hence, Figure 4 and 5 make clear that the non-co-
designed solution is not adequate in either case, whereas
the co-designed solution performs efficient and even
constant in the considered settings.

Figure 4. Mean fault recovery time in seconds.

Figure 5. Communication cost in packets/second.

Besides the presented results, the co-designed solution
brings the additional advantage of load-balancing fault
recovery homogeneously over time, while the non-co-
designed approach handles faults in bursts, which is an
undesired behavior especially in wireless networks where
congestions are more likely to occur.

5. RELATED WORK
Since their first introduction in [1], design patterns have
been successfully applied in diverse fields of software
design in general (e.g. [2]) and in communications software
in particular (e.g. [7]). Patterns in OSS that build mostly on
existing ones from distributed systems were recently
discussed in [8].

30

70

60

50

40

0

20

10

m
e

a
n

 r
e

c
o

v
er

y
 t

im
e

[s
e

c
on

d
s]

checking interval [seconds]

10 20 30 40 50 600

constant values: co-designed

linear increase: non-co-designed

0.1

1000

100

10

1

0.01

co
m

m
u

n
ic

a
ti

on
 c

o
st

 [
p

a
c

k
e

ts
/s

e
co

n
d

]

checking interval [seconds]

10 20 30 40 50 600

constant values: co-designed

negative slope: non-co-designed

65

Besides these general treatises, a number of design patterns
for sensor networks were identified e.g. in [9], modeling
the sharing of results and certain forms of interaction. In
context-aware computing, a number of patterns were
proposed in [10] to support in the design of context-aware
adaptation processes. Recognizing a lack of structure in the
design of secure VoIP solutions, the authors of [11]
introduce several patterns that address VoIP security
problems, such as secure firewall traversal.

In telecommunications system architecture, a number of
patterns were introduced in [12] and [13], including the
mediator and observer pattern. Further, [14] introduces a
number of patterns for managing communication networks,
including the manager-agent and managed object pattern.
The authors of [15] identify some of the existing standard
design patterns in SNMP-based network management, such
as the façade pattern, in order to advocate the strong points
of SNMP-based management for future management
architectures. Finally, the authors of [16] introduce the echo
pattern that facilities the execution of distributed
management operations by a two-phase distributed
dissemination and aggregation protocol.

In conclusion, the large collection of design patterns
considered in the literature range from established patterns
in software engineering (e.g. façade pattern) to very
specific patterns in network management (e.g. echo
pattern). However, the proposed patterns are not applicable
to the design of management tasks where both knowledge
and functionality are shared between service and
management processes that have the potential to cooperate
in accomplishing complex management operations.

6. CONCLUSION
We have described co-design patterns that provide a
structured way of implementing management functions
where service and management processes share knowledge
and functionality of how to accomplish a management task.
By using the example of distributed fault management, we
have shown how co-design patterns can be applied to
simplify design and exploit existing functionality and how
the application of co-design patterns yields significant
performance benefits.

While we have identified a first set of valuable co-design
patterns, more experience is required to conceive and
evaluate the benefit of other potential such patterns.
Currently, we are pursuing this goal in the context of the in-
network management paradigm within the 4WARD project
[4]. Of specific interest is how the co-design patterns can
be used to facilitate the transition of current management
practices towards future ones, that is, how to move from
centralized to more distributed management architectures.
While co-design patterns will not solve the full spectrum of
complexity problems in distributed management systems,
they can contribute significantly to supporting simplicity,
reusability, and the distribution of management tasks.

7. REFERENCES
[1] Alexander, C.: A Pattern Language: Towns, Buildings,

Construction. Oxford University Press (1977)
[2] Gamma, E., Helm, R., Johnson, R., Vlissides, J. M.:

Design Patterns: Elements of Reusable Object-
Oriented Software. Addison-Wesley (1994)

[3] Johnsson, M., Huusko, J., Frantti, T., Andersen, F.-U.,
Nguyen, T.-M.-T., de Leon, M. P.: Towards a New
Architectural Framework – The Nth Stratum Concept.
MobiMedia’08. Oulu, Finland (2008)

[4] Dudkowski, D., Brunner, M., Nunzi, G., Mingardi, C.,
Foley, C., Ponce de Leon, M., Meirosu, C., Engberg,
S.: Architectural Principles and Elements of In-
Network Management. Mini-Conference IM’09. Long
Island, NY, USA (2009)

[5] Dudkowski, D, Marrón, P. J., Rothermel, K.: An
Efficient Resilience Mechanism for Data Centric
Storage in Mobile Ad Hoc Networks. MDM’06. Nara,
Japan (2006)

[6] Dudkowski, D., Marrón, P. J., Rothermel, K.:
Migration Policies for Location-Centric Storage in
Mobile Ad-Hoc Networks. MSN’07. Beijing, China
(2007)

[7] Rising, L., Schmidt, D. C.: Design Patterns in
Communications Software. Cambridge University
Press (2001)

[8] Ashford, C., Gauthier, P.: OSS Design Patterns: A
Pattern Approach to the Design of OSS Interfaces.
Springer (2009)

[9] Tei, K., Fukazawa, Y., Honiden, S.: Applying Design
Patterns to Wireless Sensor Network Programming.
ICCCN’07, pp. 1099-1104. Honolulu, HI, USA (2007)

[10] Gordillo, S., Rossi, G., Lyardet, F.: Design Patterns for
Context-Aware Adaptation. Saint 2005 Workshop on
Context-Aware Adaptation for the Mobile Internet, pp.
170-173. IEEE Computer Society (2005)

[11] Anwar, Z., Yurcik, W., Johnson, R. E., Hafiz, M.,
Campbell, R. H.: Multiple Design Patterns for Voice
over IP (VoIP) Security. IPCCC’06, pp. 492-499.
Phoenix, AZ, USA (2006)

[12] Duell, M.: Managing Change with Patterns. IEEE
Communications Magazine 37(4):37-38 (1999).

[13] Meszaros, G.: Design Patterns in Telecommunications
System Architecture. IEEE Communications Magazine
37(4):40-45 (1999).

[14] Keller, R. K., Tessier, J., von Bochmann, G.: A Pattern
System for Network Management Interfaces.
Communications of the ACM 41(9):86-93. New York,
NY, USA (1998)

[15] Sevinç, P. E., Martin-Flatin, J.-P., Guerraoui, R.:
Patterns in SNMP-Based Network management.
ICSSEA’04, Paris, France (2004)

[16] Lim, K. S., Stadler, R.: A Navigation Pattern for
Scalable Internet Management. IM’01, pp. 405-420,
Seattle, WA, USA (2001)

66

