
Are TCP Extensions Middlebox-proof?

Benjamin Hesmans, Fabien Duchene, Christoph Paasch,
Gregory Detal and Olivier Bonaventure

ICTEAM, Université Catholique de Louvain
Louvain-La-Neuve – Belgium

firstname.name@uclouvain.be

ABSTRACT
Besides the traditional routers and switches, middleboxes
such as NATs, firewalls, IDS or proxies have a growing im-
portance in many networks, notably in entreprise and wire-
less access networks. Many of these middleboxes modify
the packets that they process. For this, they to implement
(a subset of) protocols like TCP. Despite the deployment of
these middleboxes, TCP continues to evolve on the endhosts
and little is known about the interactions between TCP ex-
tensions and the middleboxes.

In this paper, we experimentally evaluate the interference
between middleboxes and the Linux TCP stack. For this,
we first propose MBtest , a set of Click elements that model
middlebox behavior. We use it to experimentally evaluate
how three TCP extensions interact with middleboxes. We
also analyzes measurements of the interference between Mul-
tipath TCP and middleboxes in fifty different networks.

Categories and Subject Descriptors
C2.5 [Local and Wide-Area Networks]: Internet; C2.6
[Internetworking]: Standards

Keywords
Protocol; TCP; Multipath TCP; Middlebox

1. INTRODUCTION
The TCP/IP protocol suite was designed with the end-to-

end principle in mind [13]. In particular, the design of the
Transmission Control Protocol (TCP) assumed that routers
never modify any field in the TCP headers or payloads. As
the Internet grew, the need for more sophisticated nodes
rose. To protect against malicious nodes, firewalls were in-
troduced. Network Address Translation (NAT) was added
to overcome the problems that were encountered with the in-
sufficient IPv4 address space. More and more middleboxes
have been introduced over time, effectively disrupting the
end-to-end principle.

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or distributed
for profit or commercial advantage and that copies bear this notice and the full cita-
tion on the first page. Copyrights for components of this work owned by others than
ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or re-
publish, to post on servers or to redistribute to lists, requires prior specific permission
and/or a fee. Request permissions from permissions@acm.org.
HotMiddlebox’13, December 9, 2013, Santa Barbara, CA, USA.
Copyright 2013 ACM 978-1-4503-2574-5/13/12 ...$15.00.
http://dx.doi.org/10.1145/2535828.2535830.

During the last decade, a wide variety of middleboxes have
been proposed, implemented and deployed [14]. These mid-
dleboxes are frequently found in enterprise and cellular net-
works [15]. A first analysis was carried out by Medina et
al [9], using TBIT [10]. This study showed that middle-
boxes interfere with TCP extensions, effectively decreasing
TCP’s performance. Honda et al. [6] took another approach,
trying to detect the behavior of the Internet’s middleboxes
by sending and recording specially crafted TCP segments.
They conclude that any extension to TCP must be designed
with middleboxes in mind. Despite the widespread utiliza-
tion of these middleboxes, there are few detailed documents
or tools that model their behavior. Such tools could be used
by designers of new protocols or TCP extensions to verify if
their proposal is deployable.

TCP is an evolving protocol. Researchers regularly pro-
pose extensions to improve its performance [11]. Several of
these extensions have been standardized by the IETF and
are widely deployed [3]. Still, TCP extensions are usually
not designed by taking middleboxes into account. As of this
writing, only one TCP extension has been designed with
middleboxes in mind : Multipath TCP [4]. Multipath TCP
(MPTCP), allows a single data stream to be sent along dif-
ferent paths. This allows to achieve a higher throughput, as
the resources of the paths are pooled together, and a better
resilience to failures through vertical handover along differ-
ent interfaces (e.g., from WiFi to 3G) [4].

In this paper, we propose a methodology to test TCP ex-
tensions behavior through known middleboxes and MBtest
to support it. MBtest is a set of Click elements that model
the main types of interference that can exist between TCP
extensions and middleboxes. We use these elements to ex-
perimentally evaluate how TCP reacts to various types of
middleboxes.

In contrast with previous work, we use the complete TCP
and Multipath TCP stacks in the Linux kernel for our evalu-
ation instead of relying on simplified models of TCP on top
of raw sockets [10, 6]. We first use the TCP Selective Ac-
knowledgment [8] and the TCP large window extension [7] to
verify experimentally whether these extensions could be de-
ployed today. Although Multipath TCP was designed with
middleboxes in mind, based notably on the measurements
described in [6], little is known of Multipath TCP imple-
mentation’s abilities to correctly handle the middleboxes.
Our experimental evaluation shows that our implementa-
tion of Multipath TCP in the Linux kernel can cope with
most middleboxes except one corner case that was unfore-
seen in the Multipath TCP specification [4]. We complement

37

Figure 1: Proposed methodology

these lab experiments with a detailed measurement study of
Multipath TCP with real applications in fifty different ac-
cess networks. These measurements revealed some strange
interactions between some ftp Application Level Gateways
running on NATs and Multipath TCP.

This paper is structured as follows. Section 2 presents our
testing methodology. Section 3 describes our Click elements
that model middleboxes and how they interfere with TCP
extensions. Section 4 analyzes the interactions between Mul-
tiPath TCP and real middleboxes. Section 5 presents the
lessons we learned from these experiments.

2. METHODOLOGY
This section describes the iterative process we used, to

verify whether TCP extensions are still middlebox-proof.
Figure 1 summarizes our methodology. The first cycle is

a “pseudo” cycle that begins with a bootstrap. Thanks to
prior knowledge about the today’s middleboxes [9, 6, 2] on
the Internet, we can start from a known list of middlebox-
behaviors.

The model phase isolates the behaviors of the individual
middleboxes and builds simple blocks that allow us to fully
control the behavior of a given middlebox.

In the test phase these blocks and the composition of
blocks are used to deploy simple and advanced tests for mid-
dleboxes in a fully controlled environment. The tests sim-
ulate a network and monitor the behavior of the transport
protocols.

If an error occurs, we analyze the problem manually to
understand the behavior of the transport protocol with re-
spect to the middlebox. The goal is to pinpoint the problem
with the protocol’s implementation and (if possible) provide
a solution. The test phase should not enter the integration
phase before all problems are solved.

When the integration phase is reached, all the tests that
have been made in the previous state should be integrated
in a test suite that would allow one to do regression tests on
the next developments.

At this point the first cycle is finished. All the future it-
erations will begin with the screening step. In this step, the
protocol that we want to test is deployed on the Internet and
should allow one to gather information about other middle-
box behaviors. Once we find new middleboxes behavior, we
can model them in the next step, etc.

3. TESTING THE DEPLOYABILITY OF TCP
EXTENSIONS

The model and testing phase require the ability to run
small middleboxes within a controlled environment. We
chose to create MBtest1, composed of a set of click ele-
ments that allow us to mimic middlebox behavior.

The middlebox functions identified during the bootstrap
phase are implemented within the following click elements:

• TCP sequence randomizer. Some firewalls are known
to randomize the TCP sequence numbers [6, 2] of pass-
ing TCP connections to prevent security problems with
older TCP/IP stacks. Our randomizer is stateless. It in-
crements the TCP sequence number of passing segments
with a fixed value.

• TCP window. Middleboxes that perform traffic control
may change the TCP window field in acknowledgements
to force a given flow to slow down. Our click element
adjusts the window field of the TCP header.

• MSS option. The MSS option is used in the three-way
exchange to negotiate the maximum segment size. Our
click element can change the value encoded in the MSS
option to mimic some middleboxes that reduce the MSS
for all TCP connections.

• TCP option removal. Some middleboxes remove TCP
options [6]. Often, middleboxes remove a specific TCP
option by replacing it with the NOP TCP option to avoid
having to update the segment length. Our click element
allows to remove a chosen TCP option from all segments
or only from segments having some flags (e.g. SYN or
FIN). It can also accept a given TCP option in the first n
segments and discard it afterwards to model path changes.

• Segment splitting. Some middleboxes split large seg-
ments before transmitting them. The most widely de-
ployed example are the high speed interfaces that support
hardware offload. These network interfaces expose a large
MSS value to the TCP stack and split the segments be-
fore transmitting them on the wire. Our click element is
able to split a segment in two or at a given length. The
element splits every segment if it contains enough data in
the payload. Some segments contain TCP options. In this
case, our click element can either copy the TCP options
only in the first segment, only in the second or in both.

• Segment Coalescing. This click element does the op-
posite of the previous one. It coalesces two consecutive
segments. If they contain options, the coalesced segment
can either use as TCP options the ones that were in the
first segment or in the second segment.

These click elements can be combined together to rep-
resent more complex middleboxes. MBtest is integrated in
netkit2 and contains a configuration language that allows
to easily attach middleboxes on the forward or the backward
path between two netkit hosts. MBtest also lets you choose
the kernel that is running on the end-hosts within the simu-
lated network. Additional details are available in MBtest ’s
documentation [5].

1Freely available at https://bitbucket.org/bhesmans/
mbtest
2http://www.netkit.org/

38

https://bitbucket.org/bhesmans/mbtest
https://bitbucket.org/bhesmans/mbtest
http://www.netkit.org/

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

1.
8

2.
1

2.
4

Loss rate (%)

0

2

4

6

8
G
oo
dp
ut

(M
bi
t/
s)

SACK deactivated

SACK activated

Figure 2: When SACK is enabled, the TCP sequence num-
ber randomizer introduces a large performance penalty com-
pared to a TCP session without SACK.

3.1 TCP SACK and middleboxes
The Selective Acknowledgement (SACK) option is defined

in [8]. It allows a TCP host to advertise the reception of
blocks of data separated by holes. This is done by placing
in the SACK option a list of the first/last sequence numbers
of each received block.

We tested the support of SACK by the unmodified Linux
stack through MBtest . One test with the sequence num-
ber randomization revealed surprising results. When a TCP
connection goes through a middlebox that randomizes the
TCP sequence number, its performance drops. Figure 2 re-
ports the goodput of a TCP connection between hosts con-
nected to an emulated 10 Mbps network via MBtest . We
compare the Linux TCP stack without SACK (gray line)
with the Linux TCP stack where SACK has been enabled
(black bars) on a path that includes a TCP sequence num-
ber randomizer. The horizontal axis reports the packet loss
ratio and the vertical axis the TCP goodput. We varied the
packet loss ratio from 0 to 2.5%. When there are no losses,
the TCP sequence randomizer does not affect the goodput.

However, when the packet loss ratio increases, the perfor-
mance of TCP drops when SACKs are used. This is coun-
terintuitive since selective acknowledgements were designed
to improve the reaction of TCP to packet losses. However,
the sequence number randomizer updates the TCP sequence
number field but does not change the SACK option. This
implies that the receiver receives a SACK option that con-
tains invalid sequence numbers. Today’s Linux TCP stack
considers that this invalid SACK block is an indication of an
invalid segment and discards all the information included in
this segment, including its acknowledgement number (which
is valid). This implies that when there are losses, many TCP
acknowledgements are discarded and TCP cannot perform
a fast retransmit. It can only recover from the losses by
relying on its retransmission timer, which slows down the
goodput significantly. We proposed a patch to the Linux
TCP maintainer to solve this problem3. We also performed
similar experiments with Mac OSX (Mountain Lion) and
found a similar performance decrease.

We run our experiments again after applying our patch.
The results are presented on figure 3. With this patch, if
an acknowledgment arrives with an invalid SACK option, it

3http://marc.info/?l=linux-netdev&m=
137694059706871&w=2

0.
0

0.
3

0.
6

0.
9

1.
2

1.
5

1.
8

2.
1

2.
4

Loss rate (%)

0

2

4

6

8

G
oo
dp
ut

(M
bi
t/
s)

Figure 3: Accounting invalid SACK as duplicate acknowl-
edgment brings benefits.

will be considered as a duplicate acknowledgment and the
fast retransmit mechanism will be triggered. This change
significantly improves the performance.

This case could be considered a bit academic since one
would expect today’s TCP sequence number randomizers to
be aware of the TCP SACK option. Unfortunately, this is
not true and our campus firewall suffered from this problem.
Detal et al. [2] found in a recent measurement study that
such sequence number randomizers are still widespread.

3.2 RFC1323 and middleboxes
We also used MBtest to study the interactions between

the TCP large windows extension [7] and middleboxes. Al-
though RFC1323 was published in the last century, there
is anecdotal evidence that some deployed middleboxes still
do not completely support this TCP extension. RFC1323
defines two different TCP extensions. The first one is the
timestamp option. This option should not cause problems
through middleboxes except that some of them are known
to modify the passing timestamps [6]. The second option is
used to support larger TCP windows. For this, the two end
hosts store the receive window as a 32 bits integer. This en-
ables the utilisation of large windows. However, the window
field of the TCP header remains a 16 bits field. The WScale
option in the SYN and SYN+ACK segments is used to ne-
gotiate a shift of the 32 bits receive window before encoding
its low order 16 bits in the window field of the TCP header.

Our tests with MBtest revealed that this extension is ro-
bust to middleboxes that change the sequence number, split
or coalesce segments. However, a middlebox that changes
the TCP window field without understanding the negotiated
WScale option would clearly cause problems. Our tests re-
vealed another subtle problem when there are different mid-
dleboxes on the forward and the backward paths. Let’s con-
sider that the middlebox on the forward path accepts the
WScale option while it is removed on the backward path.
If the WScale option is removed from the SYN+ACK then
the TCP state machines on the client and the server are
desynchronized. The client assumes that the large window
extension is not used for the connection (since it did not re-
ceive the WScale option) while the server still uses window
scaling.

For example, consider a WScale option set to 8 by the
client and the server, but removed from the SYN+ACK seg-
ment. If the server has an initial window of 14592 bytes, a
typical value for the Linux TCP stack, it will encode a win-

39

http://marc.info/?l=linux-netdev&m=137694059706871&w=2
http://marc.info/?l=linux-netdev&m=137694059706871&w=2

Middlebox-function Successfull? Fallback?

1 NAT Y (Yes) N (No)
2 Remove opt. SYN Y Y
3 Remove opt. Data Y Y
4 Sequence number rand. Y N

Segment Splitting
5 Opt. both segment Y N
6 Opt. first segment Y N
7 Opt. second segment Y Y
8 Opt. second segment* N -
9 Coalesce Y Y

Table 1: MPTCP works across all common middleboxes, by
either falling back to regular TCP, or thanks to a built-in
support for this type of middlebox.

dow field of 57 in the TCP headers that it sends. Upon
reception of this segment, the client considers this value as
the window size in bytes ! It will only be able to send a 57
bytes segment causing a significant drop of performances.

3.3 Multipath TCP and middleboxes
Multipath TCP (MPTCP) is a major extension to TCP

that allows to send a single data stream across multiple inter-
faces [4, 12]. MPTCP has been designed in such a way that
it should work across today’s Internet with all its middle-
boxes. To achieve the above, MPTCP opens multiple TCP
subflows. Each subflow appears as a regular TCP connection
to middleboxes. MPTCP multiplexes the data among these
subflows and relies on TCP-options for signalling. During
the design of MPTCP, its authors kept the middleboxes in
mind and the specification includes several mechanisms to
deal with different kinds of middleboxes. [4] These mecha-
nisms allow MPTCP to realize that there is a middlebox on
the path that modifies the segments in such a way that a
safe operation of MPTCP is no more possible. In this case,
MPTCP performs a fallback to regular TCP.

In order to validate the protocol mechanisms, we repro-
duce well known middlebox-behavior in MBtest and verify
that the Linux Kernel implementation of MPTCP4 v0.87
correctly handles this kind of middlebox. Table 1 shows
the summary of the tests performed. The first column de-
scribes the type of middlebox used, the second column re-
ports whether the connection successfully transmitted the
data and the third column indicates whether MPTCP had
to fallback to TCP. Each test uses two interfaces on the
client, one interface on the server and 2 disjoint paths.

Middleboxes may remove unknown TCP options from the
TCP header. As MPTCP uses a TCP option to signal the
support of MPTCP to the peer, it may be affected by such a
middlebox. MPTCP includes two mechanisms to deal with
option removal. First, MPTCP places an MPTCP option in
the SYN segments of the three-way handshake. This allows
the end hosts to negotiate support for MPTCP, but also to
detect middleboxes that remove unknown TCP options. In
case of such a middlebox, MPTCP seamlessly falls back. We
validated with MBtest that this case was handled correctly
by the Multipath TCP implementation in the Linux kernel.
However, this is not the only case where a middlebox that
removes an MPTCP option may cause problems. Internet
paths may be assymetric, or a middlebox may only remove
a TCP option from non-SYN segments. In order to sup-

4Available at http://multipath-tcp.org

Client

Valid path

Fallback

Segment Split* Server

Seq(1->10) DSS(1->10)

Seq(1->10) DSS(1->10)

DSS ACK(11)

Seq(11->20) DSS(11->20)

Seq(11->15)

Seq(16->20) DSS(11->20)

Figure 4: A very unlikely segment splitting scenario.

port this kind of asymmetric behavior, MPTCP is able to
fallback , if a middlebox removes TCP options from non-
SYN segments. For this, MPTCP requires that the first
window worth of data contain the MPTCP option in each
segment [4]. A host that does not receive an MPTCP op-
tion in the first data segment seamlessly falls back, thus stop
using the MPTCP-options. After a fallback, the sender re-
ceives the first acknowledgment without an MPTCP option,
which causes it to also fallback. We validate this behavior in
MBtest by removing the MPTCP options only out of data
segments (line 3, table 1).

As MPTCP multiplexes data among different TCP sub-
flows, the receiver must handle out-of-order segments. To re-
order the data at the receiver, MPTCP uses a data-sequence
number which is included in a TCP option (the DSS op-
tion). This option includes the mapping between the TCP
sequence number and the data sequence number. To cope
with sequence number randomizers, this mapping is relative
to the beginning of the MPTCP connection. We verified
with MBtest that the Linux implementation of MPTCP op-
erates correctly through such middleboxes.

Middleboxes that perform segment splitting or coalescing
have also been discussed during the design of MPTCP. A
segment-splitting middlebox has three choices on where to
set the TCP options of the original packet. It can either
copy the options in both packets, in the first one or only
in the second one. The first two cases work seamlessly for
MPTCP. If the middlebox places the DSS option only on the
second packet, MPTCP peforms a fallback, as the first data-
segment does not contain a DSS option (see the explanation
above).

A special case arises when only the second data segment
is split (line 8 in Table 1 and depicted in Figure 4). This
particular scenario has the following packet-sequence. The
first data-segment is correctly acknowledged by the receiver,
indicating to the sender that this path correctly supports
Multipath TCP. However, the second data-segment is split
by the middlebox. If the middlebox does not copy the DSS
option in the first packet, the receiver will have to fallback to
regular TCP. Thus, this scenario results in an inconsistent
state between the sender and the receiver. it must be said
that this scenario is very unlikely to happen in the real world.

Due to space limitations, we do not discuss the impact of
segment coalescing. However, we can confirm that MPTCP
works across such kind of middleboxes.

Finally, application-level gateways may modify the data
stream by adding or removing bytes to the payload. Adding
or removing bytes modifies the boundaries of the data-sequence
mapping. Multipath TCP has to detect this and, fallback.
This is achieved through an additional checksum over the
payload which is included in every MPTCP segment. If
an application-level gateway modifies the data-stream, this

40

http://multipath-tcp.org

checksum allows to detect this modification and trigger a
fallback, allowing the data stream to proceed without any
problems. The following section describes a particular case,
where this checksum is vital to the correct operation of
MPTCP.

4. MPTCP AND REAL MIDDLEBOXES
The screening phase of our proposed methodology consists

in deploying the extension or protocol on the current Inter-
net in order to detect yet unknown middlebox behaviors.
Indeed, some of the deployed middleboxes, such as Deep
Packet Inspections (DPI), firewalls or some application-level
proxies might not have been considered during the boot-
strapping phase. Only a real deployment can reveal these
kind of middleboxes in order to integrate them into our list
of middlebox behaviors.

The rest of this section is organized as follows. First, we
show that by deploying MPTCP across the Internet, we de-
tected odd and unmodeled middleboxes behavior. We then
modeled those middleboxes in MBtest and investigate their
impact on MPTCP.

4.1 Detecting new middleboxes
To evaluate the interactions between MPTCP and existing

middleboxes we implemented a test suite inside a Virtual-
Box [1]. Our VirtualBox image contains an instrumented
MPTCP kernel and several applications (ftp client, http

client and ssh client). Although the VirtualBox is used on
single-homed hosts, we configured it to use one, two or four
subflows. We also modified the MPTCP kernel to use a dif-
ferent scheduler. The MPTCP scheduler is the algorithm
that selects the TCP subflow over which each data segment
is sent. The default scheduler always tries to send segments
over the subflow that has both an open congestion window
and the lowest round-trip time. We implemented two differ-
ent schedulers. The round-robin scheduler sends segments
over the established subflows in round-robin. This sched-
uler ensures that each subflow carries a part of the data
stream. Thus, a DPI will only see part of the application-
level protocol on each single TCP-session. The duplicating
scheduler sends each segment over all established subflows.
This scheduler allows us evaluate the possible impact of re-
transmissions.

Our VirtualBox includes several measurement scripts that
use the various clients to interact with our MPTCP server.
Our measurement script collects all packets sent and re-
ceived by both the VirtualBox and our server. This enables
us to detect whether middleboxes have modified TCP seg-
ments between the client and the server.

Colleagues and MPTCP users ran the VirtualBox in more
than fifty different entreprises and access networks. By an-
alyzing the collected packet traces, we discovered several
unexpected interactions between MPTCP and middleboxes.

The SSH and HTTP(S) protocols were always working for
both MPTCP and TCP. FTP however revealed interesting
results. FTP uses two different types of connections. First,
the control connection on port 21 allows to control the FTP
session. Second, data connections are used to transfer files.
The data connection can either be created by the client (pas-
sive mode) or by the server (active mode). In both modes,
the host specifies to its peer the IP address and port num-
ber used for the data connection in the PORT command. If
there is a NAT, it must include an ALG that modifies the

Client
IP C1

NAT 1
 IP X

Server
IP S

PORT C1

PORT X

MPTCP RTO

Checksum

wait

Checksum

invalidate

PORT C1

PORT X

 MPTCP fall back

PORT C1

PORT X

Figure 5: Active FTP using MPTCP with one NAT

data stream in order to replace the private IP address by
the public one.

We discovered that even with regular TCP, active FTP
works only in 23 out of the 50 access networks. Many NAT
devices are not able to correctly modify the IP address in the
control connection, and thus do not allow FTP to operate
correctly.

In the networks where active FTP over regular TCP worked,
FTP over MPTCP succeeded in 86% of the cases. In the
cases were MPTCP failed, the IP address contained in the
PORT command was not properly modified by the NAT.

4.2 FTP in MBtest

To better understand the fallback mechanism in case of
ALG we modeled such behavior in MBtest and performed
experiments in a setup where a client is connected to a server
through a single NAT.

The client uses FTP in active mode to transfer a file. In
this configuration, we need to distinguish two cases; the
“public” IP address of the NAT is such that the length
(in characters) of the PORT command with regard to the
original command emitted by the client is either smaller or
larger/equal. As MPTCP includes the DSS-mapping, which
allows to map the subflow sequence number to the data se-
quence number, changing the size of a packet affects the
DSS mapping. If the translated PORT command is smaller,
the mapping is incomplete. The MPTCP stack must wait
for a subsequent data segment to fill the mapping and be
able to verify the DSS checksum. If the translated PORT

command is larger or equal, the mapping is complete and
thus the DSS checksum can be verified immediately.

We conducted experiments with both cases :

smaller PORT command.
We collect the traces on both interfaces from the client

and on the server side. The analysis of the traces show
that the PORT command is sent 3 times. Figure 5 shows the
exchange.

After the first PORT command reaches the server, MPTCP
cannot validate the DSS checksum because the MPTCP
mapping covers more data than received. MPTCP does not
acknowledge the data at MPTCP level (but well at the sub-
flow level) causing the client to wait for an MPTCP-level re-
transmission timeout before retransmitting the data. When
received by the client it completes the MPTCP mapping
from the first segment. As the payload changed, the check-
sum is invalid. Because this subflow is the only one and
consequently the last one, MPTCP performs a fallback for
this subflow. Finaly the client will retransmit a third PORT

41

command without MPTCP options that is correctly handled
by the FTP server.

equal/larger PORT command.
In this case, as soon as the segment is received on the

server, the data covers the mapping and the checksum can
immediately be invalidated, triggering a fallback to regular
TCP.

Instead of a single subflow, we may have n subflows. In
this case each sublflow will sequentially receive an incom-
plete mapping for the PORT command separated by at least
one MPTCP-level timeout. Then MPTCP will retransmit
again on all subflows the same PORT command and it will
complete each mapping. Each subflow, except the last one
will be closed. And the last one will fallback. In this case
MPTCP will need to retransmit the PORT command 2n + 1
times before fallback. Moreover, if the last subflow that sur-
vives and fallback to TCP is not the initial subflow, PORT

command carries an IP address that is not the one expected
by the FTP server and it will respond with ILLEGAL PORT.

5. LESSONS LEARNED
During this detailed study of the interactions between

TCP extensions and middleboxes, we’ve learned several lessons
that are valid for any designer of TCP extensions. The first
lesson is that a TCP extension cannot assume that one field
of the TCP (or IP) header will never be modified in-transit.
Changing the semantics of one field of the TCP header, like
placing a shifted receive window instead of the entire receive
window in the window field of the TCP header [7] is unsafe
through middleboxes. If the large window extension had
to be redesigned today, it would probably be necessary to
place the entire receive window inside a TCP option. Fur-
thermore, as shown by our SACK tests, assuming that the
sequence number will not be modified is not safe. If Selective
ACK had to be redesigned today, they would probably need
to encode in the SACK blocks a delta from the beginning
of the TCP connection. This solution, used by Multipath
TCP to deal with sequence number randomization, appears
to be safe. Second, a TCP extension cannot assume that a
TCP option sent by a host will always be delivered to the
other host. In a world with middleboxes, the negotiation
performed during the three-way handshake is not anymore
a two party negotiation. It becomes an n-party negotiation
where n is not usually known. This makes the negotiation
more complex. In particular, terminating the negotiation by
the transmission of an option in the SYN+ACK segment is
not safe as demonstrated by our tests with RFC1323. Mul-
tipath TCP solves this problem by placing an option in the
third ACK. This should become the default for TCP ex-
tensions. Third, any middlebox that modifies the length of
the payload may lead to some troubles. In regular TCP, if
a middelbox wants to change the data length of a segment
that follows an out-of-order packet, TCP sequence numbers
may not be modified anymore because it would either cre-
ate a hole or an overlap in sequence number. In the case
of MPTCP, any change of the payload length will invalidate
the MPTCP mappings present in DSS. Moreover, if the data
have been shrank, MPTCP may need several MPTCP-level
timeouts to detect the issue because the receiver will have
to wait for each subflow to complete the mapping and com-
pute the checksum. It is also worth to note that DPI may

be harder with MPTCP because it is not always possible to
reassemble the entire stream.

Our measurements with MBtest and across the Internet
have shown that Multipath TCP is able to cope with various
types of middleboxes.

6. ACKNOWLEDGMENTS
This work is partially funded by the European Commis-

sion funded CHANGE (INFSO- ICT-257422) projects and
the IAP-BESTCOM.

7. REFERENCES
[1] Virtualbox. https://www.virtualbox.org.

[2] G. Detal, B. Hesmans, O. Bonaventure, Y. Vanaubel,
and B. Donnet. Revealing Middlebox Interference with
Tracebox. In ACM/USENIX Internet measurement
conference (IMC), 2013.

[3] M. Duke, R. Braden, W. Eddy, and E. Blanton. A
Roadmap for Transmission Control Protocol (TCP).
RFC4614, Sept. 2006.

[4] A. Ford, C. Raiciu, M. Handley, and O. Bonaventure.
TCP Extensions for Multipath Operation with
Multiple Addresses. RFC6824, Jan. 2013.

[5] B. Hesmans. Mbtest. Technical report, 2013.

[6] M. Honda, Y. Nishida, C. Raiciu, A. Greenhalgh,
M. Handley, and H. Tokuda. Is it still possible to
extend TCP? In ACM/USENIX Internet measurement
conference (IMC), pages 181–194. ACM, 2011.

[7] V. Jacobson, B. Braden, and D. Borman. TCP
Extensions for High Performance. RFC1323, May
1992.

[8] M. Mathis, J. Mahdavi, S. Floyd, and R. Ally. TCP
Selective Acknowledgment Options. RFC2018, Oct.
1996.

[9] A. Medina, M. Allman, and S. Floyd. Measuring
Interactions between Transport Protocols and
Middleboxes. In SIGCOMM’04, pages 336–341. ACM,
2004.

[10] J. Padhye and S. Floyd. Identifying the TCP behavior
of web servers. In ACM SIGCOMM’00, 2000.

[11] C. Raiciu, J. Iyengar, and O. Bonaventure. Recent
advances in reliable transport protocols. In SIGCOMM
ebook on Recent Advances in Networking, 2013.

[12] C. Raiciu, C. Paasch, S. Barre, A. Ford, M. Honda,
F. Duchene, O. Bonaventure, and M. Handley. How
hard can it be? Designing and Implementing a
Deployable Multipath TCP. In USENIX Networked
Systems Design and Implementation (NSDI), 2012.

[13] J. H. Saltzer, D. P. Reed, and D. D. Clark.
End-to-End Arguments in System Design. ACM
Transactions on Computer Systems (TOCS),
2(4):277–288, 1984.

[14] J. Sherry, S. Hasan, C. Scott, A. Krishnamurthy,
S. Ratnasamy, and V. Sekar. Making Middleboxes
Someone Else’s Problem: Network Processing as a
Cloud Service. In SIGCOMM’12, pages 13–24, 2012.

[15] Z. Wang, Z. Qian, Q. Xu, Z. Mao, and M. Zhang. An
Untold Story of Middleboxes in Cellular Networks. In
SIGCOMM’11, pages 374–385, 2011.

42

	Introduction
	Methodology
	Testing the Deployability of TCP extensions
	TCP SACK and middleboxes
	RFC1323 and middleboxes
	Multipath TCP and middleboxes

	MPTCP and real middleboxes
	Detecting new middleboxes
	FTP in MBtest

	Lessons learned
	Acknowledgments
	References

