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ABSTRACT
Software frameworks for machine learning play key roles in the de-
sign and development of machine learning applications. However,
more and more complicated models are developed and data vol-
ume becomes very huge, therefor distributed training is necessary
for machine learning applications. Moreover a machine learning
framework usually supports a specific kind of machine learning
algorithms, consequently a unified interface is required. In this
paper, we introduce Onelearn, a Python-based, high-efficiency ma-
chine learning framework with model sharing, automatic resource
management and unified interface. Onelearn provides a means of
implementing a full range of distributed machine learning algo-
rithms, including deep learning algorithms, traditional machine
learning algorithms, etc.

1 INTRODUCTION
In recent years, machine learning has driven advances in many
different fields and has become a core service in large companies[3].
Many machine learning frameworks have rise in recent years, such
as Tensorflow[1], Scikit-learn[5], MXNet[2], Theano and Pytorch.
But usually a single machine learning framework only supports
a specific machine learning algorithm. This situation gives rise to
high learning cost for machine learning developers. In addition, the
model storage formats for different frameworks are incompatible,
which makes it difficult to transfer model from different machine
learning frameworks. Thus model sharing is significantly meaning-
ful when it comes to cross-platform machine learning tasks.

The success of machine learning can be attributed to the design
of more sophisticated machine learning models and the availability
of Big Data. Sophisticated machine learning models have a large
number of parameters. The scale of machine learning model and
the volume of data are becoming increasingly large, which requires
massive computations. The increment of computational complexity
poses challenges to creating a distributed and high-performance
machine learning system. In distributed machine learning, the pa-
rameters of machine learning models should be synchronized after
some iterations of computation, which may cause heavy commu-
nication overhead. We can use efficient transport protocols such
as RDMA(Remote Direct Memory Access) protocol to accelerate
the parameter synchronization process. Besides, peer-to-peer com-
munication framework can fully utilize network bandwidth and
efficiently reduce network communication bottleneck compared to
traditional parameter server architecture[4].

In distributed computing scenario, the resource management and
the network configuration are intricate. However, existing machine
learning frameworks only support allocating resource manually.
For example, in TensorFlow, users have to specify IP addresses
and cluster information in the training program, and users must
start the program manually in each training worker which is really
troublesome, especially when you have tens of thousands of nodes.
Consequently it is desired to automatically manage resources and
launch training tasks for machine learning system.

In this paper, we design and develop the Onelearn system. Com-
pared with other machine learning systems, Onelearn provides a
unified interface for a variety of machine learning algorithms and
supports high-performance and peer-to-peer distributed training
in heterogeneous clusters. Besides, supporting automatic resource
management. It also provides model sharing interface, which en-
ables Onelearn to share models with other frameworks.

2 DESIGN
2.1 Overall Architecture
As we mentioned earlier, Onelearn has four characters: unified pro-
gramming interface, automatic resource management, distributed
computation with highly efficient communication and model shar-
ingwith other frameworks. These four features are highly embodied
in our system design. Figure 1 shows the architecture of Onelearn.
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Figure 1: System architecture of Onelearn.



Onelearn system supports various algorithms and uses various
computational kernels as backends. In Onelearn system, the phys-
ical resources are virtualized and can be automatically managed.
Moreover, Onelearn will efficiently parallelize machine learning al-
gorithms and use RoCE(RDMA over Converged Ethernet) protocol
to accelerate the parameter synchronization.

2.2 Unified Programming Interface
Onelearn which utilizes existing best-practice computational ker-
nels supports various machine learning algorithms including sta-
tistical machine learning algorithms, deep learning algorithms, re-
inforcement learning algorithms, etc. Onelearn will automatically
choose the most appropriate computational kernels according to
the algorithms. Onelearn uses Scikit-learn, Keras, etc. as computa-
tional kernels. These different computational kernels are targeted
to corresponding machine learning algorithms.

Onelearn uses Scikit-learn computational kernel to implement
machine learning algorithms. Our machine learning interface pro-
vides a large range of traditional machine learning algorithms
i.e., classification, regression, clustering, dimensionality reduction,
model selection and preprocessing.

Onelearn uses Keras as computational kernel for deep learn-
ing and reinforcement learning. Keras uses Theano, TensorFlow,
and CNTK[6] as computational backends. Onelearn provides basic
building blocks of neural network including neural network layers,
optimization algorithms, and training tricks. Therefore developers
have little burden to build models.

2.3 Automatic Resource Management
Automatic resource management in large-scale training jobs is a
challenge. We design and implement automatic resource manage-
ment module based on Kubernetes. Onelearn provides the ability
to manage the resources transparently and automatically. The prin-
ciples of the resource management module are as follow:

• Isolating resources, especially for GPU;
• Automatic addressing for the network of training cluster;
• Providing fault-tolerance capacity.

Training tasks are running in the containers, which guarantee iso-
lation of resources. Pods which are a group of containers can be
accessed by their corresponding services rather than IP addresses.
Additionally, a distributed file system is mounted as persistent vol-
umes(PV) to save training data, codes and training logs. Component
Client which runs in a pod will allocate the resources transpar-
ently and robustly. Besides, Component Client maintains a certain
amount of resources for each machine learning job and will real-
locate resources when some workers break down, thus Resource
reallocation can provide fault-tolerance capacity.

2.4 Distributed Computation and
Highly-efficient Communication

Onelearn can automatically partition dataset and parallelize model.
Users don’t need to configure the distributed environment manu-
ally.

Distributed computing will result in a substantial communica-
tion overhead, thus an efficient transport protocol is important for

communication. RoCE protocol, which shows significant help in
improving the distributed computing performance[7], can also ben-
efit Onelearn. We employ RoCE protocol to efficiently synchronize
the parameters.

RoCE protocol is a kind of RDMA protocol characterized by
kernel bypass and zero-copy which means the communication is
processed by hardware and CPU don’t need to be interrupted and
the IO overhead is mitigated. Due to these features, Onelearn is
able to achieve excellent performance in large-scale computing.

2.5 Model Sharing with Other Frameworks
Onelearn provides the ability to share models with other frame-
works, to achieve that goal a unified model storage is required.
Onelearn only supports CPU and GPU clusters, but in practice, we
have diverse environments such as embedded systems and VR/AR
devices, etc. Various frameworks have various optimizations on
hardware environments, which benefit different machine learn-
ing applications. Therefore, we need to support various models on
different frameworks to be compatible with different platforms.

We design unified model storage based on ONNX. ONNX pro-
vides a standard format for deep learning and machine learning
models. We design and implement the frontend and backend of
model sharing module in Onelearn. The frontend can covert One-
learn model to ONNX model, and backend can convert ONNX
model to Onelearn model.

3 CONCLUSION
We have described Onelearn system and its architecture. Onelearn
is a machine learning framework combining unified user inter-
face with automatic resource management. Onelearn can efficiently
and transparently run distributed machine learning algorithm. It is
Python-based and supports various machine learning algorithms.
Our initial experiences with Onelearn are encouraging. Some en-
terprises have put Onelearn into services and we have received
inspiring feedback, while we continue to explore new design choices
and more powerful architecture.
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