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ABSTRACT

With the growing importance of real-time communications
(RTC), designing congestion control (CC) algorithms for RTC
that achieve high network performance and QoE is gaining
attention. Recently, data-driven, reinforcement learning (RL)-
based CC algorithms for RTC have shown great potential,
outperforming traditional rule-based counterparts. However,
there are no open platforms tailored for training, evalua-
tion, and validation of the algorithms that can facilitate this
emerging research area.

We present OpenNetLab, an open platform for fast train-
ing, reproducible end-to-end evaluation, and performance
validation of RL-based CC algorithms for RTC. Preliminary
use cases confirm that OpenNetLab concretely aided the
training of novel RL-based CC algorithms for RTC that out-
perform a well-established rule-based baseline in both net-
work performance and QoE metrics.

CCS CONCEPTS

« Networks — Transport protocols; - Computing method-

ologies — Machine learning; - Software and its engi-
neering — Application specific development environ-
ments;
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1 INTRODUCTION

Recently, the popularity and importance of real-time com-
munications (RTC) has been rapidly growing both in exist-
ing and emerging domains, especially due to the COVID-19
pandemic [9]. Notable examples are the popularity of main-
stream video conferencing applications such as Microsoft
Teams [4], Google Meet [2] and Zoom [7], which play a key
role from online education to remote work. With the advent
of 5G network infrastructures, emerging cases such as virtual
reality (VR) [11, 14] and cloud gaming [17, 25] constantly
adds importance of RTC.

Traditional RTC systems adopt rule-based algorithms for
congestion control (CC). Notable example is GCC [16], a
default CC algorithm of WebRTC [10], a de facto back-end
framework for browser-to-browser RTC over the Internet.
GCC uses one-way delay gradient to infer congestion, and
it hardwires a set of rules that map pre-defined packet-level
events to network control decisions. Recent publications [31,
32, 35] analyze that due to its rule-based nature, GCC faces
limitations in adapting video bitrate and latency under the
heterogeneous modern Internet with diverse bandwidth and
latency characteristics.

Recently, data-driven, reinforcement-learning (RL)-based
approaches have shown great potential in many domains
of networking research. For instance, Pensieve [22] showed
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that RL-based bitrate adaptation for VoD can reduce frame
stalling while improving bandwidth utilization. PCC-RL [18]
demonstrated that an RL-based TCP CC algorithm can suc-
cessfully learn to distinguish patterns that rule-based algo-
rithms cannot capture, which allowed it to achieve better
performance compared to the rule-based TCP CUBIC [15],
which is default in linux. OnRL [32] and Loki [31] trained
RL-based bitrate controllers for RTC, which demonstrated
large improvement in both network performance and QoE
especially under lossy wireless networks.

Despite the growing importance of the RL-based approaches
in RTC, the research community lacks a common platform
for training, evaluation and validation which is essential in
facilitating the research in this domain. Although there exist
domain-agnostic tools for RL training [6, 21] or open testbeds
for networking research in domains other than RTC [29, 30],
we found that building a platform for training, evaluation
and validation for RL-based CC for RTC cannot be achieved
by naively stitching them together, but requires design deci-
sions that meet system requirements analyzed in § 2.1.

To this end, we propose OpenNetLab, a first open platform
for training, evaluation and validation of RL-based CC algo-
rithms for RTC. We believe that such a community platform
will make a major contribution in facilitating the research
in this field which has growing importance. We make the
following contributions:

e We design and build the first open platform for train-
ing, evaluation, and validation of RL-based CC algo-
rithms for RTC. The platform is open sourced in https:
//github.com/OpenNetLab.

e ~40 test nodes have been deployed across universities
and research institutions in East Asia, including China,
Hong Kong SAR, South Korea, and Singapore, for vali-
dating RL-based CC algorithms under heterogeneous
networks (4G/5G, Wi-Fi, wired).

o Preliminary use cases of RL-based CC algorithms trained
using OpenNetLab in the MMSys challenge [1] demon-
strate the contribution of OpenNetLab to the research
community.

In the following sections, we present main motivation of
OpenNetLab (§ 2) followed by system design that achieves
our vision (§ 3) and the implementation of it (§ 4). We share
performance results of preliminary use cases of OpenNetLab
in the MMSys challenge [1] (§ 5). Finally, we summarize
related works (§ 6) and discuss open research questions (§ 7).

2 BACKGROUND AND REQUIREMENTS
2.1 Background

Reinforcement Learning. In reinforcement learning (RL),
an agent interacts with environment by producing actions
based on the observed states to maximize a reward. The agent
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learns a policy that maps a state of the environment to an
action. The exact definitions of environment, agent, state,
action, and reward are problem-specific.

Bandwidth-estimation based CC in WebRTC. WebRTC [10]

is a de facto back-end framework for browser-to-browser
RTC over the Internet. As WebRTC traffics are transferred
via RTP over UDP, the WebRTC has the responsibility to
mitigate the unreliable delivery.

To deal with the unreliability, WebRTC figures out achiev-
able media quality given the latency constraints based on the
estimated bandwidth. Specifically, based on the estimated
bandwidth, WebRTC determines video resolutions or frame
sizes by adjusting media-encoding parameters to meet the
latency-media quality tradeoff. In this way, WebRTC aims to
achieve the best possible media quality while meeting the
latency constraints to assure that media keeps flowing. This
is critical for quality-of-experience (QoE) especially when
peers are connected to networks with different throughput
levels or under low and varying available bandwidth.
RL-based CC algorithm for WebRTC. In RL-based CC
algorithm, an agent interacts with a given network environ-
ment by receiving network statistics from feedback RTCP
packet that forms a state and producing estimated bandwidth
as an action. Through training, the agent learns a policy to
produce actions under given states that maximizes reward,
which is designed to represent network performance and

QoE.

2.2 System Requirements

We propose three requirements for an open platform that
supports training, evaluation and validation of RL-based CC
algorithms for RTC.

e R1. Easy-to-use interfaces for designing RL algorithms.
The platform should bridge the knowledge gap [28]
between researchers with various levels of RL and
networking expertise, to facilitate their cooperation in
designing the RL-based CC algorithms.

e R2. High fidelity training and evaluation environment
with ms-scale timing alignment. Training and evalu-
ation of an RL-based CC algorithm requires a high
fidelity network environment that is controlled and
reproducible.

e R3. Validation under unseen network conditions. Open,
fair comparison between RL-based CC algorithms re-
quires a public Internet testbed with diverse nodes and
network types.

3 OPENNETLAB

3.1 Design Decisions

To satisfy the requirements R1-R3 in section § 2.2, Open-
NetLab is built with the following design decisions D1-D3.
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Figure 1: Overview of OpenNetLab.

e D1. Gym environment decoupled from the details of
RTC system internals for usability and programmability.
§3.2

e D2. Fast training and reproducible evaluation under
high fidelity simulated network environment. § 3.3

e D3. Public Internet testbed for running customizable
end-to-end RTC calls for performance validation. § 3.4

Figure 1 shows the lifetime of an RL-based CC algorithm
from model design to performance validation.

First, RL and networking researchers cooperate to design
an RL-based CC algorithm using @ Gym Environment.
The designed algorithm is trained in @ Simulator where
the RL agent learns network environment by the network
statistics sent from the WebRTC receiver, and produces es-
timated bandwidth as an action sent back to the WebRTC
sender. The sender determines target bitrate based on the
estimated bandwidth. The trained RL-based algorithm can
be evaluated using the simulator in an inference mode by
checking whether it reached a desired test reward. Finally,
the trained algorithm is submitted to @ public Internet
testbed to validate its network performance and QoE under
unseen network conditions. Here, the trained model check-
point in .pth format is shipped to WebRTC receiver, which
provides network statistics to the agent whenever a packet
arrives. We found that the overhead of receiving network
statistics from the WebRTC receiver and producing action
during inference is less than 1ms in most cases, which has
negligible impact of end-to-end RTC call.

3.2 Model Design

Designing an RL-based CC algorithm for RTC requires ex-
pertise in both RL and RTC so that the algorithm can learn
proper network states from the environment and make deci-
sions to maximize the objective of achieving high network
performance and QoE.

OpenNetLab decouples Python model interface from the
WebRTC software stack to hide unnecessary details of We-
bRTC system internals so that RL researchers can focus
on the model design. Specifically, Gym Environment is the
Python interface that exposes network statistics such as
receiver-side bitrate, delay and loss ratio. RL researchers can
use these statistics to determine state, i.e. input to an RL
agent, and design reward such that learning to make actions
that maximize this reward would result in high network
performance and QoE.

In RL, there are diverse learning algorithms to improve
sample complexity (e.g. popular algorithms in policy gradient
methods [26]), and training strategies to improve generaliz-
ability or robustness (e.g. transfer learning, curriculum learn-
ing or hierarchical RL [23]). With the Gym Environment,
it is straightforward to build models using off-the-shelf RL
training toolsets provided by widely used open-sourced li-
braries like OpenAl Gym [6] or Ray RLIib [21], which greatly
improves usability and programmability in RL training.

3.3 Model Training and Evaluation

Offline training. To train the RL agent under the highest
fidelity network environment, it may seem to be natural to
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Figure 2: Architecture of OpenNetLab community
testbed. White boxes represent stateful managers, and
shaded boxes represent states.

choose online training in real network environment. How-
ever, as the online training involves playing real media traf-
fic, it may take impractical amount of time for the model
until convergence. For instance, learning hours of RTC ses-
sions via online training can be reduced to several minutes
of offline training under trace-driven packet-level simula-
tor. More importantly, training an RL-based CC algorithm
directly on a deployed RTC system can be unsafe, as the sys-
tem becomes prone to sudden performance fluctuation due
to the trial-and-error nature of the exploration in RL [32].
Packet-level event-driven simulation of network envi-
ronment. To achieve fast yet high fidelity training under
simulated network environment, the simulator creates real
WebRTC sender and receiver instances and performs event-
driven simulation of network environment with ns-3 [5].
With network traces obtained by probing the real network
environment with measurement tools like iperf [3], the sim-
ulator schedules ns-3 events to simulate changing network
environment (e.g. bandwidth, loss and jitter) as recorded in
the trace.

3.4 Model Validation

In line with the potential of the data-driven, learning-based
algorithms in networking research, there are also confusion
on whether they actually outperforms their rule-based base-
lines or other competitors "in the wild". Measurement studies
in TCP CC [30] and randomized experiments on adaptive
bitrate controllers for VoD [29] continuously demonstrate
that validating the learned algorithm’s performance on pub-
lic Internet under unseen network conditions is necessary
to understand the performance characteristics of the learned
algorithms and make fair comparisons.

Easy-to-use web-based frontend. Researchers submit a
performance validation job by uploading their trained RL-
based CC algorithms and specifying the required resources
(compute node, network type) via a web-based frontend.
Centralized, stateful managers for job deployment, re-
source management, and job scheduling. When a new
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job is submitted, DeployManager records the job information
(e.g- model checkpoint of the trained algorithm and software
packages required to run it) and requested resources. When
ResourceManager allocates available physical test nodes
(PM) in the testbed and VMs, DeployManager schedules the
job by running containerized WebRTC sender and receiver
VMs on the allocated nodes in a FIFO manner. While the job
is running, DeployManager tracks the state of the job and
PMs and VMs where the job runs with periodic health check
messages. The state of PMs and VMs are sent to ResourceM-
anager. When the job finishes, DeployManager reports the
event to ResourceManager to remove VMs from the nodes
and reclaim the PMs.

Each manager stores its states in a cloud-based DB (Azure
Storage) for fault tolerance. For example, ResourceManager
maintains a PM Table and a VM table that record the health
state of PMs and allocation state of VMs. DeployManager
maintains a Job Status Table that records the status of
all scheduled jobs, and Job Info Table that records all
user-submitted job information needed to run the job. When
a job fails, the job instance is re-created using the recorded
job information and rescheduled to nodes that satisfy the
user-submitted machine specification.

4 IMPLEMENTATION

We have implemented a prototype of OpenNetLab to ver-
ify the feasibility of our idea. It consists of the following
parts: AlphaRTC, AlphaRTC Gym, community-driven public
testbed, and backend microservices.

AlphaRTC. AlphaRTC is a full WebRTC stack with RL-
based CC inference support (~2K LoC). Audio/video input
and output features can be added to customize end-to-end
calls.

AlphaRTC gym. AlphaRTC Gym corresponds to the Gym
Environment for training (~3K LoC). We use ns-3 [5] for sim-
ulating network environment between an AlphaRTC sender
that generates fake RTC packets to an AlphaRTC receiver.
We use OpenAl Gym [6] as our gym interface.

Community-driven public testbed. Through active academic-

industrial collaboration, we construct open public Internet
testbed that includes wired, wireless and mobile networks
and heterogeneous nodes with support from universities
throughout Asia. The nodes are in China (Beijing, Hefei,
Nanjing, Lanzhou, Shenzhen, and Hong Kong), South Korea
(Seoul and Daejeon), and Singapore (Queenstown).

Backend microservices. Azure backend microservices co-
ordinate the nodes in the testbed. For the stateful managers
described in section § 3.4, we implemented microservice
agents that communicate with REST APIs and deploy them
on the cloud-based Kubernetes service. We use Ansible to
communicate between the agents and nodes located across
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test sites. The agents are programmed by C# with 10K lines
of code.

5 PRELIMINARY RESULT

To promote RL-based CC research, we hold a challenge on
Bandwidth Estimation for RTC in MMSys [1] using Open-
NetLab. The participants train their own RL-based CC al-
gorithms with our Gym Environment and Simulator, and
upload their models via the web frontend. The submitted
algorithms are validated on the public Internet testbed with
different network and video scenarios.
Scenarios. We select three network scenarios as in Table 1
and five video content scenarios with different types: anima-
tion, movie, conversation, presentation, and screen sharing
over remote desktop. Each scenario is run 15 times in a
round-robin way.
Evaluation metrics. We adopt widely used VMAF [20]
video quality metric proposed by Netflix and DNSMOS [24]
audio quality metric used in Microsoft as QoE metrics, in
addition to the network metrics. Total score is a weighted
sum of three scores (video score, audio score, and network
score):
total_score = wl * video_score + w2 * audio_score
+ network_score M

video_score = 100 * VMAF /groundtruth (2)

audio_score =
1if DNSMOS > groundtruth  binarize, 100 3)

else0

network_score = w3 x delay_score 4
+ w4 * receive_rate_score + w5 * loss_score (4)

delay_score = max(0, 100 * (max_delay — delay_95th)
/(max_delay-min_one_way_delay))

(5)
receive_rate_score = 100 x receive_rate/groundtruth (6)

loss_score = 100 * (1 — loss_rate) (7)

The groundtruth in video_score, audio_score and receive_-
rate_score corresponds to the score obtained in an ideal en-
vironment (zero loss rate, high link capacity). We use the
groundtruth score as the full marks. To tune the score func-
tion to produce scores that are inverse of the bandwidth
estimation error, the values of the coefficients w1, w2, w3,
w4, w5 are empirically set as 0.2, 0.1, 0.2, 0.2, 0.3, respectively.

!f an algorithm’s DNSMOS score is larger than the groundtruth for binarize
number of times, the audio_score is 100, and otherwise 0.
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Evaluation result. We share performance results of two
RL-based CC algorithms, Gemini and HRCC [27], which
are the winner and runner-up of the challenge, respectively,
compared to GCC [16].

3a shows that GCC achieves the highest video score in
high and medium bandwidth scenarios. However, in the low
bandwidth scenario, HRCC and Gemini outperform GCC.
This demonstrates the potential of RL-based CC algorithms
in covering the blind spots of rule-based GCC, which hard-
wires pre-defined rules of mapping packet events to network
control decisions. 3b shows that in low bandwidth scenario,
HRCC suffers from low delay score, while GCC suffers from
low loss score, respectively. Conversely, in medium band-
width scenario, HRCC suffers from low loss score, while GCC
suffers from low delay score. This implies that HRCC can be
further optimized by balancing the sending rate and packet
loss in these two network scenarios in the Gym Environment.
In 3c we can see Gemini ranks the 1st in total, but leaves
room for improvement in the high bandwidth scenario. The
audio score is 100 for all the three as audio transmission does
not suffer from any bottlenecks.

6 RELATED WORKS

Training framework for RL-based networking systems.
ns-3-gym [13] showed that fast training under simulated en-
vironment can achieve good model quality when adopting a

high fidelity simulator like ns-3. Although similar in spirit,

the simulator in OpenNetLab is tailored for training RL-based

CC algorithms for RTC by connecting a customized gym and

WebRTC with ns-3. Genet [34] is a training framework for

RL for networking systems. It solves generalization problem

inherent in RL with sample-efficient training environment

selection mechanism via curriculum learning.

Public Internet testbed for networking research. Pan-
theon [30] and Puffer [29] demonstrated the benefit of build-
ing an open testbed with public Internet for research com-
munity. Concretely, Pantheon contributed to the design and

evaluation of rule-based [8] to data-driven algorithms [12, 18,

19, 30] and measurement study [33]. Pantheon’s success in-
spired OpenNetLab, where OpenNetLab aims to make similar

contributions by providing tailored training and evaluation

support for RL-based CC for RTC.

7 LIMITATIONS AND FUTURE WORK

Management of a community-driven public Internet
testbed. The public Internet testbed of OpenNetLab is still
under construction. Scalable mechanisms to maintain a large
number of test nodes is challenging, which is under active de-
velopment. Supporting new use cases and network scenarios
is also one of main items ongoing work. For example, sup-
porting new network scenarios such as resource-constrained
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Network scenario Node 1 Node 2 Bandwidth range | Mean RTT
Low bandwidth | Beijing (Wi-Fi with weak signal) | Hong Kong (Wired) <1Mbps 55ms
Medium bandwidth Beijing (Mobile) Hong Kong (Wired) 2 - 3Mbps 62ms
High bandwidth Lanzhou (Wired) Hong Kong (Wired) >10Mbps 30ms

Table 1: Network scenarios.

Network Scenario

(a) Video Score

Network Scenario

(b) Network Score

B GCC W Gemini O HRCC ° B GCC W Gemini O HRCC B GCC M Gemini O HRCC
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Figure 3: Video, network and total scores in different network scenarios.

IoT devices connected to lossy networks would facilitate
researches on the topic of energy efficient RTC.
Interpretability and robustness. OpenNetLab should in-
clude additional features that can help prevent learning-
induced performance degradation. Learning-based algorithms
faces inherent limitation in robustness and interpretability
due to its non-deterministic behaviors. This is a major obsta-
cle that prevent them from at-scale deployment in production
systems, as a single instance of catastrophic QoFE degradation
may cause users to abandon the RTC application [31].
Open dataset and model zoo. Providing open datasets and
model zoo will be valuable community resource for the re-
search community. State-of-the-art RL-based CC algorithms,
such as HRCC and Gemini in § 5, can benefit from open
datasets in improving the algorithm quality and fair evalua-
tion between algorithms. Model zoo with open model codes
and pretrained checkpoints will facilitate advanced RL train-
ing strategies that require pretrained models such as transfer
and curriculum learning [34].

High fidelity fine-tuning for pretrained RL-based CC
algorithms. Even calibrated with real network traces, using
simulated network environment only for learning patterns in
network conditions faces limitations as it can only indirectly
optimize QoE. We are planning to add emulator-based fine-
tuning of RL-based CC that is pretrained on the simulator.
We expect this high-fidelity fine-tuning phase can close the
gap between the simulated and public Internet environment.

8 CONCLUSION

Recent potentials shown in data-driven, RL-based approaches
in networking research motivate the needs of an open plat-
form tailored for training and evaluation of RL-based CC
for RTC, whose importance has never been more higher. We
outline the requirements for this open platform, and propose
an open platform for fast training, reproducible end-to-end
evaluation, and performance validation on public Internet.
Preliminary use cases confirm that OpenNetLab concretely
aided the design and training of novel RL-based CC algo-
rithms that outperform well-established rule-based baseline
in both network performance and QoE.
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