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ABSTRACT
Network servers often spawn a worker thread to deal with the
incoming connection while the main thread remains listening as
background thread. Random scheduling of multiple threads causes
variations of the coverage of edges, which constrains the
performance of the fuzzer. In this work, we present WThreadAFL,
a new grey-box fuzzer for fuzzing multi-thread network servers.
WThreadAFL addresses the non-deterministic problem based on a
lightweight thread identification approach. We distinguish
between worker thread and background thread via thread-context
instrumentation, and only update coverage feedback of the worker
thread. The experimental results on four popular server
benchmarks show that, WThreadAFL behaves more deterministic
than network protocol grey-box fuzzer AFLNET, which increases
the stability metric by 1.9%－ 25.7% and cuts down coverage
variable edges by 19.0%－39.8% within 24 hours.
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1 Introduction
Network servers are an important part of the IT infrastructures.
The security flaws of them are particularly harmful since network
servers are exposed to the whole Internet, and attackers can
exploit them remotely in anywhere. Thus, it is of great
significance to find and repair the vulnerability of network servers.

Coverage-guided Greybox Fuzzing (CGF) is a relevant
vulnerability discovery technique and has been widespread
adopted in testing file-based system(such as AFL[1]).Recent
research[2,3,4] proposes to apply CGF to detect vulnerability in
network servers. For instance, AFLNET[2] expands AFL with a
network communication plugin and automated protocol state
model inferencing, and successfully fuzzing up to 10 sorts of
protocols.

However, the non-deterministic behaviors in fuzzing network
servers greatly affect efficiency. Network servers often spawn a
sub-thread or sub-process to handle the incoming connection
("worker thread") while the main thread remains listening
("background thread"). The worker thread contains key data and
logic which we really care about. But the AFLNET ’ s coverage-
guided design is unaware of multithreading and mixes up multiple
executions. The uncertain coverage feedback makes fuzzer
difficult discerning between meaningful and "phantom" effects of
mutating the input files. Thus, the efficiency for network servers
fuzzing is severely constrained by the current thread-unaware
coverage feedback.

In this work, we present WThreadAFL, a new grey-box fuzzer
for deterministically fuzzing network servers. We inject code into
the target server at compile-time through source code
instrumentation technique. The injected code infers pure coverage
feedback of worker thread by: tracking thread creations and
collect identity of new thread; on each basic block, determining
whether to run on the worker thread; if so, updating code coverage,
otherwise not. In this way, we avoid the disturbance of
background thread and gain more deterministic feedback. In
summary, the main contributions of this paper are as follows.
 A new feedback that identify and focus on worker thread

without interference of background thread based on
lightweight thread identification approach;

 A prototype tool implementation called WThreadAFL,
which has higher stability and fewer various edges during
fuzzing network servers;

 An evaluation of four popular protocol benchmarks, and the
result shows that WThreadAFL performs more deterministic
than original coverage-guided protocol fuzzer AFLNET.

2 DESIGN AND IMPLEMENTATION

2.1 Feedback to be Thread-aware
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AFLNET instruments the start point of each basic block. Once a
basic block is executed, the injected code acts as deputy to
provide coverage feedback indicating a new path or a state. We
refer to the deputy instructions as Feedback-Instrumentation.
Since Feedback-Instrumentation does not record thread identities,

Figure 1 Thread-aware instrumentation in basic block

AFLNET cannot distinguish different threads. Therefore, we can
add more deputy instructions to collect thread-context information
for recognizing the worker thread by performing conditional
judgment before Feedback-Instrumentation.

2.2 Instrumentation probes
To identify the worker thread in basic block level, we insert
probes into the instructions of the target server. Probes consists of
context probes and recognition probes, which are weaved at
specific program sites that create new threads, and that in the front
of entry instruction of each basic block. As the figure 1 shows,
Context probes collect the context information of new threads,
and record it as identifier. Recognition probes recognize if the
current thread is worker thread by reading the identifier, and then
determine whether to carry out the Feedback-Instrumentation or
not. In this way, WThreadAFL minimizes the “ noise ” of
background thread, and drive fuzzing with more deterministic
coverage feedback.

2.3 Implementation
WThreadAFL is developed on top of AFLNET[2] and LLVM[5].
For coverage feedback, we expand the technical solution provided
by AFLNET. Besides the original Feedback-Instrumentation, we
add further instrumentation to inject probes in the program, as
discussed earlier. The context probes are inserted on thread
creation sites that invoke the standard APIs such as fork or
pthread_create, in order to acquire thread information. And the
recognition probes are introduced to the beginning of each basic
block, so as to identify the worker thread. In this way, we
successfully have the fuzzer focused on the worker thread and
record its coverage feedback only.

3 EVALUATION
Configuration. We evaluate the performance of WThreadAFL
using four multi-thread network servers: Forked-daapd, LightFTP,
Pure-FTPd, Exim. All the programs have been widely used at

present. Thus, we suppose these four programs are representative.
We fuzzed each server for 24 hours and repeated 24 hours
experiment 5 times for each test program to reduce the
randomness of test results. All of our experiments was run on a
64-bit machine with 16 cores (2.1 GHz Intel Xeon Silver 4216 ),
125GB of RAM, and Ubuntu 16.04 as server OS.

TABLE 1 : Stability of two fuzzers
AFLNET WThreadAFL

Forked-daapd 4.44 6.36(↑1.92)
LightFTP 79.79 85.52(↑5.73)
Pure-FTPd 17.91 28.53(↑10.62)
Exim 33.87 59.54(↑25.70)
Comparison. We compared WThreadAFL with grey-box

protocol fuzzer AFLNET on the four servers. Firstly, we
measured the degree of the stability metrics. As Table 1 shows,
when fuzzing multi-thread network servers, WThreadAFL
behaved more deterministic than AFLNET, which increased the
stability metric by 1.9%－ 25.7%. Then we further investigated
the amount of deterministic and variable edges during 24 hours
testing. As Table 2 shows, for deterministic edges, WThreadAFL
raised the number among three targets by 1.2%－ 70.0%, and
lessen the number of one target by 7.6%. Since the worker thread
contains the main logic and data, and our technique ignores the
coverage feedback of the background thread, we consider a slight
decrease in quantity is acceptable. As for variable edges,
WThreadAFL cuts down the number not less than 19% and up to
39.8%. That result illustrates that our work is useful for solving
non-deterministic problem in protocol fuzzing.

TABLE 2 :Deterministic edges / Variable edges
AFLNET WThreadAFL Ratio(%)

Forked-daapd 172/3973 159/2999 ↓7.6 / ↓24.5
LightFTP 517/141 523/90 ↑1.2 / ↓36.2
Pure-FTPd 271/1230 388/996 ↑43.2 / ↓19.0
Exim 1610/3206 2737/1930 ↑70.0 / ↓39.8

4 Conclusion
In this poster, we present WThreadAFL, a new grey-box fuzzer
for fuzzing multi-thread network servers. Based on thread-aware
instrumentation, we propose a novel technique to distinguish the
worker thread, and gain deterministic coverage feedback during
random scheduling of multiple threads. The experimental results
on four popular server benchmarks demonstrate the effect of
WThreadAFL.
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