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Building applications by composing “Microservices”

• Software development: cloud-based applications as a 
composition of loosely-coupled microservices

• Benefits: composable software design

• Independently deployable

• Easy to scale out
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Online Boutique Application from Google[1]
[2][3, 4] [3, 4]

[1] https://github.com/GoogleCloudPlatform/microservices-demo
[2] Decomposing Twitter: Adventures in Service-Oriented Architecture
[3] The Evolution of Microservices. https://www.slideshare.net/ adriancockcroft/evolution-of-microservices-craft-conference.
[4] Adrian Cockroft. Microservices Workshop: Why, what, and how to get there. http://www.slideshare.net/adriancockcroft/ microservices-workshop-craft-conference.

This approach has also become popular for software-based network applications

https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
https://github.com/GoogleCloudPlatform/microservices-demo
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Serverless Computing – Fast-growing Cloud Offering

• Serverless computing is one of the faster-growing offerings in the cloud

• Serverless: Paradigm for development and deployment of cloud applications to ease 
burden on users

• Function as a service (FaaS): Users only provide application function code

• Enabled by the shift of enterprise application architectures to containers and 
microservices.

• Characteristics: Short running, Stateless, Event-driven

• Benefits of Serverless Computing

• Removes need for traditional always-on server components

• Reduces user cost and complexity, and greatly improve service scalability and 
availability

• Provisioning and managing the infrastructure becomes the cloud providers’ job
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Understanding Cloud Stacks

• “Serverless” Computing or Function-as-a-Service (FaaS)
• “Event-driven” execution: Applications are triggered based on events, terminated 

upon event completion

• True “Pay-as-you-go” billing: Pay only for the execution of an application function. 
No charge when the application is idle

Servers

Storage Networking
Hardware

User Application

Operating System

Software

User Data

Cloud manages
Virtualization

You develop

Users can solely focus on the application logic!
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Infrastructure Support for a Serverless Cloud
An abstract functional view
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[1] https://knative.dev/docs/



6

Excessive overhead within the serverless data plane 

Overhead Contributor #1: kernel-

based networking

• Copies, context switch, proto. 

processing, …

Overhead Contributor #2: stateful, 

constantly-running components in 

the userspace

• Container-based sidecar

• Message broker

• Cluster Ingress Gateway

Performance 

Loss

Reduced 

Efficiency
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Towards Lightweight and High-performance Data Plane
Enhancement: Event-driven Interaction via extended Berkeley Packet Filter

Serverless Cloud Data plane

Ingress 

gateway

Function pods

Sidecar container

User container

Message 

Broker

External client

eBPF is an ideal 

capability for event-

driven execution

eBPF sidecar

Function pods

Sidecar container

User container

eBPF sidecar
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Towards Lightweight and High-performance Data Plane
Enhancement: From Kernel-based Networking to Shared Memory Processing
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Kernel-based Networking “Pass-by-reference” 
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SPRIGHT: Lightweight Serverless Function Chains
eBPF-based event-driven capability + Shared memory processing

Enhancement #1: eBPF-based sidecar

Enhancement #2: Shared memory processing

Enhancement #3: Direct Function Routing (DFR)

Replacing individual, constantly-running sidecars

Reduce data movement overhead

Simplify inter-function invocations

Kernel protocol stack

Physical NIC

Function 1
SPRIGHT 
Gateway

Function 2

Shared Memory Pool

Sidecar 
Container

eBPF 
Sidecar

Sidecar 
Container

eBPF 
Sidecar

eBPF map

Message 

Broker

Evolving to SPRIGHT
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Overhead auditing: Existing Design vs. SPRIGHT

• SPRIGHT: 0 data copies, 0 protocol processing, 0 serialization/deserialization overheads 
within the chain

eBPF-based event-driven capability and shared memory processing brings 

substantial reduction of overheads within the serverless function chain

Data Pipeline 
No.

External Within chain
Total

① ② total ③ ④ ⑤ total

# of copies 1 2 3 4 4 4 12 19

# of ctxt 
switches

1 2 3 4 4 4 12 19

# of irqs 3 4 7 6 6 6 18 31

# of proto. 
processing

1 2 3 3 3 3 9 15

# of 
serialization

0 1 2 2 2 2 6 9

# of 
deserialization

1 1 1 2 2 2 6 10

Data Pipeline 
No.

External Within chain
Total

① ② total ③ ④ total

# of copies 1 2 3 0 0 0 3

# of ctxt 
switches

1 2 3 2 2 4 9

# of irqs 3 4 7 2 2 4 13

# of proto. 
processing

1 2 3 0 0 0 3

# of 
serialization

0 1 2 0 0 0 2

# of 
deserialization

1 1 1 0 0 0 1

Existing Design SPRIGHT



11

Performance with Online Boutique

Throughput:

• SPRIGHT maintains a stable RPS of ∼5500 
requests per second
• ➔ (5× more than Serverful)

• ➔ (6× more than Knative)

Response Latency:

• SPRIGHT has very low tail latency (95%ile)
• 10X lower than Serverful

• 52X lower than Knative

SPRIGHT vs. Serverful gRPC mode (no sidecar & DFR) vs. Serverless (Knative)
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Efficiency with Online Boutique

CPU efficiency:

• SPRIGHT consumes in total only ∼3 CPU cores

• Functions + SPRIGHT Gateway

• Only 10% of Knative and gRPC

SPRIGHT vs. Serverful gRPC mode (no sidecar & DFR) vs. Serverless (Knative)
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Startup latency comparison

• Same control plane and Docker container runtime

• Evaluated with online boutique functions

• Key observation:

• SPRIGHT has negligible latency spent on creating eBPF sidecar and setting up shared memory data plane

• But container runtime creation dominates the overall startup latency

Knative (left bars) vs. SPRIGHT (right bars)
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The tradeoff between isolation and agility in 
virtualized runtime
• Isolating serverless functions in open, shared cloud

• Unikernel can make serverless functions agile and enable 
strong isolation

• ∼4× faster startup compared to Docker containers

• Unikernel offers single address space

➢Exploration of Unikernels for serverless and microservices

➢ USETL [APSys’19], UaaF [IWQoS’20], SEUSS [EuroSys’20], 
NanoVMs

➢ MirageOS [ASPLOS’13], OSv [ATC’14], LightVM [SOSP’17], 
Unikraft [EuroSys’21]

Virtualized runtime Isolation Startup speed

Container Weak
Not satisfactory

Full-size VM Strong Poor

Unikernel Strong? Good

Problem #1: Single-
address-space unikernel is 
considered not safe

• UK BB: Bare-Bones UniKraft

• UK and SURE use QEMU

• OSv: OSv unikernel + Firecracker

• Docker: docker container

Startup Latency
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Sharing Memory space is considered not safe

• The idea of “memory space sharing” is wonderful

• Data plane: zero-copy communication

• Virtualized runtime: NO user-kernel boundary crossings

• But, “memory space sharing” is often considered harmful

• A potential conduit for data leakage and corruption 

• May be caused by malicious or buggy behavior

• Need to address concerns about “sharing” concerning two aspects

• Inter-unikernel: between different functions using shared memory

• Intra-unikernel: between user code and the unikernel LibOS modules

Problem #2: 
Shared memory processing 
is considered not safe

Problem #1: Single-
address-space unikernel is 
considered not safe
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eBPF is not suitable for unikernels

• eBPF cannot be fully utilized in unikernel environments

• lack of certain eBPF hooks 

• eBPF doesn’t provide the full (L7) payload visibility 

• eBPF has a constrained programming model

Problem#3: 
Shared memory processing 
is limited to a single node

Problem #2: 
Shared memory processing 
is considered not safe

Problem#4: 
eBPF is not suitable for 
unikernels

Problem #1: Single-
address-space unikernel is 
considered not safe
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Problem#3: 
Shared memory processing 
is limited to a single node

Problem #2: 
Shared memory processing 
is considered not safe

Problem#4: 
eBPF is not suitable for 
unikernels

Problem #1: Single-
address-space unikernel is 
considered not safe

Federico Parola 2 2

Unikernels with protection:

Shared-memory
intra-node data plane

Zero-copy inter-node
TCP/IP stack (Z-stack)

Library-based sidecar

Worker node Worker node
Unikernel 1

I/O Side
Car

Shared memory pool

SURE Gateway SURE Gateway

Unikernel 2

I/O Side
Car

Shared 
memory pool

Unikernel 3

I/O Side
Car

Z-stack

DPDK

Z-stack

DPDK

MPK-based call gate

User Fn User Fn User Fn

Our solution SURE
Secure Unikernels Make Serverless Computing Rapid and Efficient

Consolidated proto. 
processing by SURE Gateway

Design#4: eBPF-like sidecar 
with L7 visibility in 
unikernels

Design#2: Enhance intra-
unikernel isolation to 
sandbox user code

Design#1: Secure shared 
memory while retaining its 
high performance

Design#3: Extended zero-
copy networking to be 
distributed
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Library-based SURE Sidecar

• Deploy the sidecar as a library linked into the function code within the unikernel

• The sidecar contains a sequence of handlers that perform certain sidecar 
functionalities

• The unikernel’s single-address-space simplifies data exchange between sidecar 
and user code

• Invocation is made by procedure call

• Overcomes shortcomings of an individual userspace sidecar.

• BUT: library-based sidecar must address concerns of sharing the memory space

Based on the LibOS design of unikernels 
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Msg size
CPU cycles (X 1K) Added delay (us) Throughput (Mbytes per sec.)

Libsidecar NGINX Libsidecar NGINX No sidecar Libsidecar NGINX

256B 0.50 60.4 0.21 25.2 342 309 12.3

4KB 0.55 59.5 0.23 24.8 3697 3533 185

8KB 0.55 58.2 0.23 24.2 5525 5369 337

Microbenchmark Analysis

Baseline: container-based sidecar (use NGINX)

* Same client and server functions as “intra-node shared memory processing” 
benchmark

• Library-based sidecar shows negligible overhead

• The CPU cycles consumed by our library-based sidecar are negligible compared to those of 
a NGINX sidecar (only 0.9%)

• The reduced CPU consumption also results in reduced delay and increased throughput

Improvement with library-based sidecar
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Trust model and Threat model in SURE

• Trusted Computing Base (TCB) in Unikernel:

• Hypervisor and associated toolchains

• Unikernel modules: scheduler, booter, sidecar, network I/O 
lib … 

• Trust model:

• Users trust the serverless infrastructure (SURE), but SURE 
does not trust users

• User applications may contain security vulnerabilities, e.g., 
buggy code

• Functions within a chain trust each other, functions in 
different chains may not

• Threat sources due to the inevitable sharing of the memory 
space

• Vulnerabilities from shared memory processing

• Intra-unikernel vulnerabilities from a single address space
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Multiple Levels of Isolation in SURE

• VM-based sandbox (based on QEMU/KVM)

• Group-based security domains with isolated 
memory pools

• Access control: with SURE gateway and sidecar

• MPK-based call gate

• Use MPK to enable memory-level isolation in a 
shared address space to protect 

1. Shared memory data plane between functions

2. Sandbox the untrusted user code within the 
single-address-space Unikernel

• Relatively small overhead for the reward of 
robust memory-level isolation

Overview

Z-stack

Security Domain #1

Worker Node

Fn-1 Fn-2 Fn-3

Shared Mem. Pool #1

SURE Gateway

Security Domain #2

Fn-1 Fn-2 Fn-3

Shared Mem. Pool #2

Physical NIC

Traffic to security 
domain #2 

Traffic to security 
domain #1 

sidecar sidecar sidecar sidecar sidecar sidecar
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Memory-level isolation in SURE

• MPK is a hardware-level, intra-process memory isolation feature in Intel’s server CPUs (since 2019)

• PKRU (Protection Key Register User)

• A per-core, 32-bit CPU register defines the access privilege of MPK, described by 2 bits

• “Access Disable” (AD) and “Write Disable” (WD)

• A total of 16 keys available within a SURE function

• Read/Write (0, 0), Read-Only (0, 1), or No-Access (1, ×)

A Primer on MPK (Memory Protection Key)

key-1
(R/O)

key-2
(R/O)

key-3
(No Access)

key-16
(R/W)

CPU Core

AD WD

0 0

AD WD

0 1

AD WD

0 1

AD WD

1 1

PKRU register

……

Page 1

Page 2

Page 3

……

Page Table

Page … MPK …

1

2

3

… …

Page … MPK …

1 key-1

2

3

… …

Page … MPK …

1 key-1

2 key-3

3 key-16

… …

PKRU register in each CPU core
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Memory-level isolation in SURE

• #1 WRPKRU (Write Data to PKRU)

• x86 instruction to change the access privilege of the MPK 
by modifying PKRU

• But a SURE function may access more than 16 pages!

• Not feasible to tag each page with a distinct key

• Memory related to Unikernel TCB components is 
managed by WRPKRU

SURE uses two approaches to switch the access privilege of a memory page

Coarse-grained but faster Fine-grained but slower

• #2 “PTE Update”

• Update the 4 bits reserved for the MPK key ID in the PTE 

• Then flush the corresponding TLB entry

• Allow for more scalable access management

• Shared memory buffers are managed by “PTE 
Update”

key-1
(R/O)

key-2
(R/O)

key-3
(No Access)

key-16
(R/W)

CPU Core

AD WD

0 0

AD WD

0 1 

AD WD

0 1

AD WD

1 1

PKRU register

……

Page 1

Page 2

Page 3

……

Page Table

Page … MPK …

1 key-1

2 key-3

3 key-16

… …
0 0

key-1
(R/W)

1 1

key-1
No Access

key-2key-16
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Secure APIs based on SURE call gates

• Only call gate can update access privilege

• Via WRPKRU or PTE Update

• Easier to work with binary inspection to prohibit illegal updates to access privilege

• Enhanced unikernel TCB (from Unikraft) in SURE

• Prevent unwanted update or access to PKRU register and PTEs of protected pages

• Avoid Privilege Escalation of MPK in a single address space

• Refer to the paper

A “call gate” abstraction for user code to safely interact with protected pages

Unikernel 1

I/O Sidecar

Shared memory pool

User Fn

TCB

Unikernel 2

I/O Sidecar

User Fn

Call gate Call gate

TCB
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Secure APIs based on SURE call gates

• Initially, the set of protected pages (i.e., stack memory in 
TCB or shared memory) is configured to be inaccessible

1. User code invokes recv() in NetI/O lib -  intercepted by 
the call gate 

2. Call gate makes protected (stack) memory accessible and 
invokes the recv() API

3. recv() API receives a buffer descriptor and updates the 
corresponding MPK key to allow user code access to the 
buffer

4. Call gate returns to user code

5. Call gate disables access to protected stack memory, 
while the received buffer remains accessible

Other privileged APIs in function runtime are guarded in the 
same way

Example: Untrusted user code invokes the privileged API recv()

Memory protection is re-enforced 
with the send() function

App code App 
memory

I/O lib
code

SHM 
buffer

Call gate

I/O lib
memory

4

recv()

App code App 
memory

I/O lib
memory

SHM 
buffer

Call gate

I/O lib
code

1recv()

Enable app access

App code App 
memory

I/O lib
code

I/O lib
memory

SHM 
buffer

Call gate

2

3recv()
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Realistic Workload Evaluation

Online Boutique Microservice Chain [1]

• Intense web workload with 10 functions

• 6 different function chains

Serverless Alternatives

• Knative

• SPRIGHT [SIGCOMM’22]

• NightCore [ASPLOS’21]

Two distinct deployment settings:

1) Intra-node

2) Inter-node: Orange and Green functions deployed on distinct nodes

Experiment setting

Frontend 

Service

Cart 

Service

Recomm. 

Service

Catalog 

Service

Currency 

Service

Shipping 

Service

Payment 

Service

Email 

Service

Ad 

Service

Checkout 

Service

Requests

Online Boutique Application[1]

[1] https://github.com/GoogleCloudPlatform/microservices-demo 

Testbed: Three sm110p nodes on Cloudlab (with 100 Gbps NIC); Ubuntu 22.04; kernel 5.15

https://github.com/GoogleCloudPlatform/microservices-demo%20%5b2
https://github.com/GoogleCloudPlatform/microservices-demo%20%5b2
https://github.com/GoogleCloudPlatform/microservices-demo%20%5b2
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Requests per second & Tail latency

• SURE is an order of magnitude better than any alternatives we evaluated
• Performance improvement attributed to the use of distributed zero-copy data plane 

and lightweight library-based sidecar 



28

Realistic Workload Evaluation

• Our metric - “CPU Cost Per RPS” (CCR)

• Defined as 
𝐴𝑣𝑒𝑟𝑎𝑔𝑒 𝐶𝑃𝑈 𝑢𝑡𝑖𝑙𝑖𝑧𝑎𝑡𝑖𝑜𝑛

𝑅𝑃𝑆
 

• Lower values of CCR suggest that each request requires fewer 
CPU cycles

• A more efficient use of the CPU

• SURE is more efficient than NightCore and Knative

• No kernel networking; More lightweight sidecar; etc

• SURE is less efficient than SPRIGHT at a low concurrency 
(≤ 16 for intra-node and ≤ 4 for inter-node)

• Comes from polling cost

• SURE is more efficient than SPRIGHT under high 
concurrency levels

• SPRIGHT uses kernel for inter-node traffic, CPU usage grows 
substantially under high concurrency levels

• More concurrent processing amortizes the polling cost

CPU efficiency
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Summary

Existing serverless designs involve many long-running, stateful components in userspace

• Container-based sidecar, Message broker

• Amplifying kernel networking overheads

• Performance loss, significant CPU costs

SPRIGHT enabled truly event-driven, load-proportional serverless computing:

• eBPF-based stateful processing: Event-driven, lightweight

• Shared memory processing: Streamlined data plane; High performance and resource efficient

SURE is a unikernel-based, lightweight serverless framework

• Unikernel-based runtime brings 4× faster startup vs. docker containers

• Uses MPK-based call gates to enable fine-grained memory access management

• Mitigate the vulnerabilities of memory space sharing 

• While retaining high performance and efficiency

• Offer zero-copy inter-function networking and lightweight library-based sidecars

• Yield up to 8× RPS improvement compared to SPRIGHT in a distributed environment

• While being more secure
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Resources

• SPRIGHT (Sigcomm 2022, IEEE/ACM Transactions on Networking 2024)

• Journal Paper: https://dl.acm.org/doi/abs/10.1109/TNET.2024.3366561

• Open Source Code: https://github.com/ucr-serverless/spright

• SURE (SoCC 2024)

• Paper: https://dl.acm.org/doi/10.1145/3698038.3698558

• Open Source Code: https://github.com/ucr-serverless/sure

https://dl.acm.org/doi/abs/10.1109/TNET.2024.3366561
https://github.com/ucr-serverless/spright
https://github.com/ucr-serverless/spright
https://github.com/ucr-serverless/spright
https://github.com/ucr-serverless/spright
https://github.com/ucr-serverless/spright
https://github.com/ucr-serverless/spright
https://dl.acm.org/doi/10.1145/3698038.3698558
https://github.com/ucr-serverless/sure
https://github.com/ucr-serverless/sure
https://github.com/ucr-serverless/sure
https://github.com/ucr-serverless/sure
https://github.com/ucr-serverless/sure
https://github.com/ucr-serverless/sure
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