
From Prediction to Proof: Rethinking
AI for Systems and Networks

Matthew Caesar
University of Illinois at Urbana-Champaign

caesar@illinois.edu

What is Artificial Intelligence?

artificial intelligence
/ˌɑːtɪfɪʃl ɪnˈtɛlɪdʒ(ə)ns/ noun

1: the capability of computer systems or algorithms to imitate
intelligent human behavior

2: a branch of computer science dealing with the simulation of
intelligent human behavior by computers

“Human thinking” has achieved success

AI Art

AI Management

AI Education

AI Search

AI Music

AI Games

“Human thinking” is prone to problems

Semantic
incoherence

Model
Opacity Data Errors

Hallucination
Mode collapse
Semantic drift

Interface
misalignment
Context drift

Non-transparency
Causal confusion
Overconfidence

Catastrophic
forgetting

Prompt sensitivity

Reward hacking
Specification

gaming
Role breakage

Deployment drift
Data poisoning

Bias
Model inversion

OOD Errors
Spurious

Correlations
Over/underfitting

Dog: 99% confidence

Manipulated

Security

Our field: Systems and Networking

• We work on infrastructures behind modern society
• These infrastructures are complex, huge, dynamic
• Yet critical to get right

Financial and
trading networks

Medical devices
Societal

infrastructures
Clouds and

online services

Humans aren’t good at getting things right

• Human error is #1 cause of problems in systems/networks
• 80% of data center outages, 95% of data breaches, 95% of data loss

incidents as a direct and immediate cause
• Some categories of faults are 100% human-caused (misconfigurations,

vulnerabilities, social engineering attacks, software bugs, insider attacks, ...)
• Consistently listed by CISOs as top risk; #1 category on IBM Threat Index

• Daily news is filled with vulnerabilities, misconfigurations,
errors

• Human error is the largest (increasing) contributor to failure

• “Human thinking” isn’t such a great approach to designing
and operating systems

Should AI be the goal of the systems
community?

• Should we be striving to build systems that “think like
humans”?

• AI may be useful, but it might also not be exactly what we want

• We may want to think more deeply about what we
actually want from AI

• We may be able to come up with something better

An alternative proposal

Artificial Reasoning
-- The capability of computer systems to derive optimal,
fully-correct, understandable and analyzable solutions,
through a formal sequence of logical steps

Focus on things we care about: safety, resilience, correctness,
efficiency, explainability

A complement, not a replacement for AI techniques

What would an AR for Systems look like?

…LB LB LB+

Multi-tenant cloud

What would an AR for Systems look like?

Creates logical reality where all facts are known

Time Reasoner

Error Lister

Code Deriver

Proof Explainer

Produces complete list of
all possible errors and bugs

Derives perfectly-functioning
code that exactly matches
goals

Gives clear, logical proof so
operator has no doubt system
is working correctly

Truth Space

Looks at every possible future
to see what will happen

Truth Deriver

Towards a solution

• Seems difficult, but recent breakthroughs make progress towards
this vision

• Formal methods enable perfect and precise modeling, proving, and
synthesis of diverse platforms

• Virtualization technologies allow manipulation of time and inputs, log
capture, and deterministic analysis and execution of real software

• Optimization techniques enable exact and rigorous derivation of optimal
behaviors in complex environments

How can we collectively leverage these components to build
generalized Automated Reasoning for networked systems?

System Architecture of an AR

Prompt
Generation

Hypervisor

System Under Reason (SUR)

Cognitive Shell

AI Container (AIC)

Theorem
Prover

Axiom Base

Protocol

System Planner

Concluder

Explanation
Generation

Auto-
correction

InterpreterCompiler

System Control Interface

(tentative)
Protection boundary

(true)

(true)
Protection boundary

(tentative)

Reasoning Correction Interface

System
Operator

Key Challenges and Solution Approaches

1. How can we formally reason about dynamic, real systems where
vagaries of execution behavior really matter?

 Solution approach: System-Guided Formal Modeling
(“guide” formal modeling with running of real implementation code)

2. How can we safely integrate less-trusted AI inputs into the
reasoning process?

 Solution approach: Cognitive Input Autocorrection
(automatically repair inputs from AIs to match correctness
specification)

Software-Based Model

How to create a model for reasoning?

One option: run the system’s software in an emulated environment (e.g., VMs)

Limitations: replication overheads, execution overheads, limited coverage

System
Software

Hypervisor

State Space Exploration

A more scalable approach to modeling

Idea: create a model with formal methods
● Can leverage rigorous techniques to efficiently, exhaustively search
● Lower bandwidth/compute requirements to traverse model states

Workaround SearchDeployment System Model

Model Hypervisor

Benefits of formal modeling

● Unveil corner cases that are hard to argue about without models

● Better predictability compared to pure emulation
○ Automatic state transition without synchronization from the deployment
○ The model-based representation is less likely to deviate from the deployment state

● More optimization opportunities compared to working with real hw/sw
○ E.g., partial-order reduction (Only the orders of packets entering the stateful

components are relevant) for simulating multiple connections through a stateful
network

Challenges in applying formal modeling for reasoning

● Models must be truthful and precise
○ Real-world systems face complexities, scale, non-determinism,

environmental interactions (e.g., time/event triggers), distributed protocols,
energy/bw constraints

● Models with unnecessary details have lower scalability

Formal Emulation: Combine models with emulation

● For each emulated component, we communicate with them from formal models by injecting and
interpreting concretized packets and events

● State space is trimmed by synchronizing with deployed system

Model checker

Policies Configs

Formal system model

Emulated network
component

(Virtual Interfaces)

Lightweight Emulation Hypervisor

Emulated network
component

(Virtual Interfaces)

concrete
packets

results

Model checker exhaustively explores
the execution of the whole system.

Formal Emulation: Combine models with emulation

● We employ virtual interfaces and network namespaces for lightweight emulation
● The packets to/from emulation instances are interpreted for model state transition

One network namespace for each emulation

0 or more processes of one IoT device
emulation

Kernel networking
stack

Userspace
custom stack

eth0 eth1 eth2

[Model code]

setns(other_ns);
write(tapfd, buf, len);
<or>
read(tapfd, buf, len);
setns(orig_ns);

Default network namespace (init_net)

tun/tap devices

Ethernet frames

Formal Emulation: Tracking emulation states

● Emulation state := initial state + history of events
a. Events: packet arrivals, sensor updates, etc.

● Emulation instances need to be in the right state
before injecting packets

a. Reset to the initial state
b. Replay the history of events

● Hashing histories of events to reduce memory
overhead

(state diagram)

current
state

backtrack

Formal Emulation: Dynamic multi-connection coordination

● How to model the non-deterministic nature of multiple connections in a
networked component?

○ Our model implemented the non-deterministic choices for the model checker explore.
○ Apply partial-order reduction (POR) to reduce unnecessary search space.
○ POR heuristic:

■ Pick an arbitrary connection until every connection is about to enter an emulation.
■ Explore all orderings of the connections entering the emulations. (And repeat.)

emulation
(stateful node)

4! = 24

Formal Emulation: Dynamic multi-connection coordination

● How to handle new connections initiated by emulations?
○ Parse received packets, and add new connections to the model state.

● What about L3 vs L7 proxies?
○ How to tell if a packet has gone through a L3 proxy or belongs to a new connection?
○ We treat all proxied packets as new connections. “Pause” connections when necessary.

Layer 3
ProxyC S C SLayer 7

Proxy

paused

paused

paused
paused

Formal Emulation: Association interpretation
● Challenge

○ Once we inject a packet, how do we know if the packet is dropped or not?
● Method 1 (drop timeout estimation)

○ Adjust the drop timeout based on injection RTT estimate, similar to TCP
retransmit timeout.

○ Cumulative estimate of time :=
● Method 2 (Linux per-packet drop_monitor)

○ Since 5.4, we can request for per-packet drop alerts from kernel.

Kernel drop_monitorDrop timeout

● No false violation when there is no tail drops● Available for all types of emulations
● Easy to implementAdvantages

● Only appropriate to hypervisors/kernels
supporting this method

● Potential false violations under high load
● Longer wait time for dropped packetsLimitations

Performance Results

● CPU time grows linearly with network size, memory usage almost constant

● Timeout method generally faster than drop-monitor; drop monitor has additional overhead
from registering and checking drops in kernel

Can we still use AI?

● AI has proven very useful to systems
○ But it can also be wrong
○ But we don’t want to just not use AI

● Idea: can we automatically correct AI inputs?
○ React quickly without need for operator in the loop
○ Transparent integration with existing workflows/APIs
○ Operator can view fixes to get insights on understanding their

errors

Cognitive Input Autocorrection

Verification
Engine

Network Model

Correction
Engine

Compressor

Optimizer

Policy Graphs
(intent-based AI

guardrails)

System Architecture
(repair updates to match
provided policy graphs)

Correct

Correct

1. Reachability

2. Load Balancing

Incorrect

Autocorrection Engine

Network

Updates

● Autocorrection layer synthesizes
repairs to inputs in real time

● Fixes/patches derived from
formal methods, guaranteeing
compliance with provided
specifications

● Optimization-based framework
to place observation and
correction programs

Two ideas for future work in Automated
Reasoning
• Formally Verified AI Systems

• There have been great strides in formal verification of AI techniques, and
networked systems separately

• Can we apply these techniques to build AI-based systems with formal
guarantees on correctness, QoS, etc.?

• Using Reason to Design Systems
• Much of research is getting automated

• E.g., we rely on AI more and more for algorithm design
• Has been harder to do for certain things, like architecture, which require robustness

• Formal logics are good at deriving rigorous designs in other disciplines
• Can we automatically derive system architectures with AR?

Conclusions

• The future of AI in systems isn’t about mimicking minds, it’s about
mastering the goals important to our community

• Artificial Reasoning may open the door to a new kind of AI
• Centered around critical properties such as correctness, trust, and

understanding

• We presented some abstractions that can help bring this vision
closer to reality

• Leveraged recent advances in formal methods, modeling, virtualization,
and optimization to achieve scale, completeness, rigor

• Early results demonstrate benefits and practicality of approaches

