UNIVERSITY OF
MICHIGAN

UC Berkeley

Exposing RNIC Resource for Software-Defined RDMA
Scheduling

Yibo Huang, Yiming Qiu, Yunming Xiao, Archit Bhatnagar
Sylvia Ratnasamy, Ang Chen

RDMA for diverse workloads is critical in data centers

e Remote Direct Memory Access (RDMA):
o low latency, high bandwidth, minimal overhead
o widely deployed in data centers

Workloads v I‘ﬁl

Key-value database Al/ML training Bulk data transfer

' N~ '
@ sriniwa i

Latency Throughput Best-effort

Trend: co-located worklaods sharing RDMA hardware resources

Ideal world:

©)

©)

Workloads on the same RDMA-enabled end host contend
for shared RDMA NIC (RNIC) resources, e.g.,
RNIC port bandwidth

©)

©)

Offer strong SLO guarantees
Operate hardware at 100% utlization

Reality: colocation leads to “noisy neighbors” issues

Interference

Shared
Resources

Latency-Critic Best-Eff;
RNIC cache Wor;]cy work@
Requirement: workloads must share resources Hardware (2000

in a context-aware and cooperative manner

utilization

Sate-of-the-art RDMA frameworks

e Lack principled design to reason about the interaction between RDMA software and
hardware layers

Applications

RDMA 10 RDMA 10

RNIC

App developer’s view RDMA hardware’s view

A big context gap between software
requirements and RDMA hardware behavior

Existing efforts and limitations

e Solution 1: Design applications carefully
o Lots of efforts
o Unaware of other colocated applications

|:> Applications

RDMA 10

RNIC

Existing efforts and limitations

e Solution 2: Redesign the RDMA IO
o Not aware of application context & hardware resources

Applications

I RDMA 10

RNIC

Existing efforts and limitations

e Solution 3a: Redesign RNIC driver implementation

o Require changes to existing RDMA practices (compatibility issues)

e Solution 3b: Leverage hardware programmability

o Programmable hardware are not always available (availability issues)

Applications

RDMA 10

|::>

Point solutions for specific cases

|/ extensive changes to RDMA
pipeline assumptions

Solution: SwiftRDMA

Operator | Job1 Job2 Job3 |

Policies

: Data-path ' .

i C scheduler |- " """ RDMA 10 Runtime
Lo Ctrl-path

i Signals | Actions $

UAR Cache PUs

| RNIC

— ctrlpath =—P> QoS data path

D

Domain-Specific Challenges

e l|dentifying root causes of interferences
o Understand intrinsics of microarchitecture resources

o Analyze different types of contentions/SLO violations

e Finding signals/actions as control knobs
o Assume commodity RNICs, no way to customize

o Unlike CPU core scheduling, no way to directly control

e Enforcing scheduling policies efficiently
o Gather signals and take actions with low overhead

o Scale well as the amount of workloads grows

|dentifying Contention Root Causes

PCle

RNIC
UAR NIC Cache
page 1 [QP context]
page 2

[Mem. translation

)

|

NIC PUs

(Ctrl/TX/RX pipelines)

NIC
ports

Net
Fabric

10

Case study: RNIC UAR Contention

ibv_post_send(QP1)

-

@ Ring doorbells
cput Jery]
P1

Q

ibv_post_send(QP2)
—

;"i UAR
page 1

page 2

L)

@ | Notification

cPuU2ceult
© DMA payloads

(P2 [ITTH) >

NIC PUs
(TX pipelines)

11

Leveraging Signals and Actions

RNIC UAR
Contention

RNIC Cache
Contention

RNIC PU
Contention

Trackable Signals

A
4 N\
I D D
UAR congest. + Num of QPs
events per UAR page
e
e
. J J

Controllable Actions

A

r
p

A
N

Load balance QPs
across UAR pages

12

Summary and Next Steps

e Motivation: RDMA is essential for co-located data center workloads, but
sharing of RNIC resource could lead to contention and SLO violation.

e SwiftRDMA: exposing hardware resources for software-defined scheduling.

e Key insight: Bridging the context gap between RDMA hardware resource
and application-level requitements.

Near-term goals

e Gathering signals/taking actions with low overhead.
e Enforcing policies with high efficiency and accuracy.

yiboh@umich.edu

13

