
Exposing RNIC Resource for Software-Defined RDMA 
Scheduling 

Yibo Huang, Yiming Qiu, Yunming Xiao, Archit Bhatnagar
Sylvia Ratnasamy, Ang Chen



RDMA for diverse workloads is critical in data centers

2

● Remote Direct Memory Access (RDMA):
○ low latency, high bandwidth, minimal overhead
○ widely deployed in data centers

Service level 
objectives (SLO)

Workloads

Key-value database AI/ML training HPC Bulk data transfer

Latency Throughput Best-effort

……



Trend: co-located worklaods sharing RDMA hardware resources

3

● Ideal world: 
○ Offer strong SLO guarantees
○ Operate hardware at 100% utlization

Latency-Critical
workloads

Best-Effort
workloads

Hardware 
utilization

RNIC

Shared 
Resources

Interference

Requirement: workloads must share resources 
in a context-aware and cooperative manner

● Workloads on the same RDMA-enabled end host contend 
for shared RDMA NIC (RNIC) resources, e.g.,
○ RNIC port bandwidth
○ RNIC cache
○ ……

● Reality: colocation leads to “noisy neighbors” issues



Sate-of-the-art RDMA frameworks

● Lack principled design to reason about the interaction between RDMA software and 
hardware layers

4

Applications

A big context gap between software 
requirements and RDMA hardware behavior

RNIC RNIC

Applications

RDMA IO RDMA IO

App developer’s view RDMA hardware’s view



Existing efforts and limitations

● Solution 1: Design applications carefully
○ Lots of efforts
○ Unaware of other colocated applications

5

RNIC

RDMA IO

Applications



Existing efforts and limitations

● Solution 2: Redesign the RDMA IO 
○ Not aware of application context & hardware resources

6

RNIC

RDMA IO

Applications



Existing efforts and limitations

● Solution 3a: Redesign RNIC driver implementation 
○ Require changes to existing RDMA practices (compatibility issues)

7

RNIC

RDMA IO

Applications

Point solutions for specific cases 

/ extensive changes to RDMA 
pipeline assumptions

● Solution 3b: Leverage hardware programmability
○ Programmable hardware are not always available (availability issues)



Solution: SwiftRDMA

8

Job1

SLOs

RDMA IO RuntimeScheduler

Signals

Policies

Ctrl-path 
Actions

UAR Cache PUs

RNIC

ctrl path QoS data path

Operator

Data-path 
Actions

Job2 Job3



Domain-Specific Challenges

● Identifying root causes of interferences

○ Understand intrinsics of microarchitecture resources

○ Analyze different types of contentions/SLO violations

9

● Enforcing scheduling policies efficiently

○ Gather signals and take actions with low overhead

○ Scale well as the amount of workloads grows

● Finding signals/actions as control knobs

○ Assume commodity RNICs, no way to customize

○ Unlike CPU core scheduling, no way to directly control



Identifying Contention Root Causes

NIC PUs
(Ctrl/TX/RX pipelines)

RNIC

UAR
page 1
page 2

…

QP context

NIC 
ports

NIC Cache

Mem. translation Net 
Fabric

CPU PCIe

10



Case study: RNIC UAR Contention

NIC PUs
(TX pipelines)

UAR
page 1
page 2

…

CPU1

CPU2

ibv_post_send(QP1)

ibv_post_send(QP2)

Ring doorbells

QP1

QP2

1

Notification2

DMA payloads3

11



Leveraging Signals and Actions 

12

UAR congest. 
events

RNIC UAR 
Contention

Num of QPs 
per UAR page

Load balance QPs 
across UAR pages 

Trackable Signals Controllable Actions

…RNIC Cache 
Contention … …

…
RNIC PU 

Contention … …

… …



Summary and Next Steps

● Motivation: RDMA is essential for co-located data center workloads, but 
sharing of RNIC resource could lead to contention and SLO violation.

● SwiftRDMA: exposing hardware resources for software-defined scheduling.
● Key insight: Bridging the context gap between RDMA hardware resource 

and application-level requitements.

Near-term goals

● Gathering signals/taking actions with low overhead.
● Enforcing policies with high efficiency and accuracy.

13
yiboh@umich.edu




