

Exposing RNIC Resource for Software-Defined RDMA Scheduling

Yibo Huang, <u>Yiming Qiu</u>, <u>Yunming Xiao</u>, Archit Bhatnagar Sylvia Ratnasamy, Ang Chen

RDMA for diverse workloads is critical in data centers

- Remote Direct Memory Access (RDMA):
 - low latency, high bandwidth, minimal overhead
 - widely deployed in data centers

Trend: co-located worklands sharing RDMA hardware resources

- Ideal world:
 - Offer strong SLO guarantees
 - Operate hardware at 100% utilization
- Reality: colocation leads to "noisy neighbors" issues
- Workloads on the same RDMA-enabled end host contend for shared RDMA NIC (RNIC) resources, e.g.,
 - RNIC port bandwidth
 - RNIC cache
 - 0

Requirement: workloads must share resources in a context-aware and cooperative manner

Sate-of-the-art RDMA frameworks

 Lack principled design to reason about the interaction between RDMA software and hardware layers

A big *context gap* between software requirements and RDMA hardware behavior

Existing efforts and limitations

- Solution 1: Design applications carefully
 - Lots of efforts
 - Unaware of other colocated applications

Existing efforts and limitations

- Solution 2: Redesign the RDMA IO
 - Not aware of application context & hardware resources

Existing efforts and limitations

- Solution 3a: Redesign RNIC driver implementation
 - Require changes to existing RDMA practices (compatibility issues)
- Solution 3b: Leverage hardware programmability
 - Programmable hardware are not always available (availability issues)

Point solutions for specific cases

/ extensive changes to RDMA pipeline assumptions

Solution: SwiftRDMA

Domain-Specific Challenges

- Identifying root causes of interferences
 - Understand intrinsics of microarchitecture resources
 - Analyze different types of contentions/SLO violations
- Finding signals/actions as control knobs
 - Assume commodity RNICs, no way to customize
 - Unlike CPU core scheduling, no way to directly control
- Enforcing scheduling policies efficiently
 - Gather signals and take actions with low overhead
 - Scale well as the amount of workloads grows

Identifying Contention Root Causes

Case study: RNIC UAR Contention

Leveraging Signals and Actions

12

Summary and Next Steps

- **Motivation**: RDMA is essential for co-located data center workloads, but sharing of RNIC resource could lead to contention and SLO violation.
- SwiftRDMA: exposing hardware resources for software-defined scheduling.
- **Key insight**: Bridging the context gap between RDMA hardware resource and application-level requitements.

Near-term goals

- Gathering signals/taking actions with low overhead.
- Enforcing policies with high efficiency and accuracy.