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RDMA for diverse workloads is critical in data centers

e Remote Direct Memory Access (RDMA):
o low latency, high bandwidth, minimal overhead
o widely deployed in data centers
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Trend: co-located worklaods sharing RDMA hardware resources

Ideal world:
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Workloads on the same RDMA-enabled end host contend
for shared RDMA NIC (RNIC) resources, e.g.,
RNIC port bandwidth
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Offer strong SLO guarantees
Operate hardware at 100% utlization

Reality: colocation leads to “noisy neighbors” issues
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Sate-of-the-art RDMA frameworks

e Lack principled design to reason about the interaction between RDMA software and
hardware layers
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A big context gap between software
requirements and RDMA hardware behavior




Existing efforts and limitations

e Solution 1: Design applications carefully
o Lots of efforts
o Unaware of other colocated applications
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Existing efforts and limitations

e Solution 2: Redesign the RDMA IO
o Not aware of application context & hardware resources
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Existing efforts and limitations

e Solution 3a: Redesign RNIC driver implementation

o Require changes to existing RDMA practices (compatibility issues)

e Solution 3b: Leverage hardware programmability

o Programmable hardware are not always available (availability issues)
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Solution: SwiftRDMA
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Domain-Specific Challenges

e l|dentifying root causes of interferences
o Understand intrinsics of microarchitecture resources

o Analyze different types of contentions/SLO violations

e Finding signals/actions as control knobs
o Assume commodity RNICs, no way to customize

o Unlike CPU core scheduling, no way to directly control

e Enforcing scheduling policies efficiently
o Gather signals and take actions with low overhead

o Scale well as the amount of workloads grows



|dentifying Contention Root Causes
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Case study: RNIC UAR Contention
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Leveraging Signals and Actions
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Summary and Next Steps

e Motivation: RDMA is essential for co-located data center workloads, but
sharing of RNIC resource could lead to contention and SLO violation.

e SwiftRDMA: exposing hardware resources for software-defined scheduling.

e Key insight: Bridging the context gap between RDMA hardware resource
and application-level requitements.

Near-term goals

e Gathering signals/taking actions with low overhead.
e Enforcing policies with high efficiency and accuracy.
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