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RDMA for diverse workloads is critical in data centers

2

● Remote Direct Memory Access (RDMA):
○ low latency, high bandwidth, minimal overhead
○ widely deployed in data centers

Service level 
objectives (SLO)

Workloads

Key-value database AI/ML training HPC Bulk data transfer

Latency Throughput Best-effort

……



Trend: co-located worklaods sharing RDMA hardware resources
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● Ideal world: 
○ Offer strong SLO guarantees
○ Operate hardware at 100% utlization

Latency-Critical
workloads

Best-Effort
workloads

Hardware 
utilization

RNIC

Shared 
Resources

Interference

Requirement: workloads must share resources 
in a context-aware and cooperative manner

● Workloads on the same RDMA-enabled end host contend 
for shared RDMA NIC (RNIC) resources, e.g.,
○ RNIC port bandwidth
○ RNIC cache
○ ……

● Reality: colocation leads to “noisy neighbors” issues



Sate-of-the-art RDMA frameworks

● Lack principled design to reason about the interaction between RDMA software and 
hardware layers
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Applications

A big context gap between software 
requirements and RDMA hardware behavior

RNIC RNIC

Applications

RDMA IO RDMA IO

App developer’s view RDMA hardware’s view



Existing efforts and limitations

● Solution 1: Design applications carefully
○ Lots of efforts
○ Unaware of other colocated applications
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Existing efforts and limitations

● Solution 2: Redesign the RDMA IO 
○ Not aware of application context & hardware resources
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RDMA IO

Applications



Existing efforts and limitations

● Solution 3a: Redesign RNIC driver implementation 
○ Require changes to existing RDMA practices (compatibility issues)
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RNIC

RDMA IO

Applications

Point solutions for specific cases 

/ extensive changes to RDMA 
pipeline assumptions

● Solution 3b: Leverage hardware programmability
○ Programmable hardware are not always available (availability issues)



Solution: SwiftRDMA
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Domain-Specific Challenges

● Identifying root causes of interferences

○ Understand intrinsics of microarchitecture resources

○ Analyze different types of contentions/SLO violations
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● Enforcing scheduling policies efficiently

○ Gather signals and take actions with low overhead

○ Scale well as the amount of workloads grows

● Finding signals/actions as control knobs

○ Assume commodity RNICs, no way to customize

○ Unlike CPU core scheduling, no way to directly control



Identifying Contention Root Causes

NIC PUs
(Ctrl/TX/RX pipelines)

RNIC

UAR
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…

QP context
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CPU PCIe
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Case study: RNIC UAR Contention

NIC PUs
(TX pipelines)

UAR
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ibv_post_send(QP1)
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1
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DMA payloads3
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Leveraging Signals and Actions 
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UAR congest. 
events

RNIC UAR 
Contention

Num of QPs 
per UAR page

Load balance QPs 
across UAR pages 

Trackable Signals Controllable Actions

…RNIC Cache 
Contention … …

…
RNIC PU 

Contention … …

… …



Summary and Next Steps

● Motivation: RDMA is essential for co-located data center workloads, but 
sharing of RNIC resource could lead to contention and SLO violation.

● SwiftRDMA: exposing hardware resources for software-defined scheduling.
● Key insight: Bridging the context gap between RDMA hardware resource 

and application-level requitements.

Near-term goals

● Gathering signals/taking actions with low overhead.
● Enforcing policies with high efficiency and accuracy.
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