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RDMA is widely deployed

• RDMA in production-level applications:

• Cloud storage, Recommendation system, LLM inference/training…
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• RDMA connection setup approaches

➢ Socket APIs : out-of-band connection

➢ CM* APIs : in-band connection

…

* The RDMA CM is a communication manager used to setup reliable, connected and unreliable datagram data transfers, and provides  

standard APIs defined by  librdmacm library.  https://man7.org/linux/man-pages/man7/rdma_cm.7.html
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RDMA fast path and slow path
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➢ Slow control path:
Connection mgmt, etc.

➢ Fast data path: Data trans , Memory mgmt etc.



RDMA control path is slow
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RDMA control path is slow
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RDMA conn setup process is inefficient and difficult to monitor.



Problems of RDMA connection setup

◼ RDMA connection management (CM) is Inefficient.
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➢ High cost: 1-2ms/conn.

Overheads in one RDMA transmission Overheads in large-scale connections

➢ Bad scalability: Connection setup 
efficiency further decreases as 
scale increases.



Problems of RDMA connection setup

◼ Production Deployment Practices for RDMA Connections
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Goals

◼ Production Deployment Practices for RDMA Connections
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Our goal is to develop an new User-space 
RDMA CM setup approach



From Kernel to User-space 
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➢ Original RDMA connection management in Linux kernel



From Kernel to User-space 
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➢ Original RDMA connection management in Linux kernel

Insights:  

➢ Choosing CM conn

➢ unified APIs

➢ in-band path

➢ path detection

➢ Recent User-Space Tech

➢ DPDK

➢ LibOS



UCM: User-space RDMA Connection Management
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➢ Our idea to bypass kernel for better performance



UCM overview

• UCM Framework

• Work module: setup and manage RDMA connections in user-space

• Monitor module: offer multi-method monitoring approaches for developers
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UCM design --- UCM work module

• To support muti-thread, how to deal with thread communication? 
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• How to bypass kernel?



UCM design --- UCM work module

• How to bypass kernel?

• Conn Mgmt in LibOS

• on-loading packets processing 

with DPDK
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• To support muti-thread, how to deal with thread communication? 



UCM design --- UCM work module

• To support muti-thread, UCM leverages multi-thread lock-free 
management

• NIC features : Flow Steering, RSS hash

• Make sure that each connection's related information is accessed and managed 
by only one thread 17



UCM design --- UCM monitor module

• Monitoring approaches

➢ User Statically-Defined Tracing (USDT)

• Add dynamic tracepoints to user-space applications

• Dynamic Monitoring with USDT

➢ Self-defined capturing tool

• Based on libpcap
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Evaluation

• End-to-end Testbed

• Hardware: Mellanox ConnectX-6 Dx EN 

• Software: cmtime, perftest, Mellanox OFED 5.8 driver, 

• Comparisons: UCM, kCM (original RDMA), SECM

• Goals

➢ Compare UCM’s connection setup speed under different scenarios with the sota
approaches (single-threaded, multi-threaded, and extreme application)

➢ Evaluate the impact of UCM’s maintenance overheads on production applications

➢ Showcase successful maintenance experiences with UCM

19



Evaluation#1--- UCM work performance (RPC apps)

➢ Deploy UCM with an enterprise RPC framework in ByteDance
• UCM’s QPS (number of QPs per second) performs 3.3-5.1x that of kCM and 

1.8-2.2x of SECM.

• The extra overhead introduced by enabling USDT is only 3.2%-7%.
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Evaluation#2--- UCM monitoring effort

➢ Monitoring for optimization
• latency of every operation in online connections

• performance after optimization
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Latency Monitoring for Conn Setup Steps Latency Comparison for a Single Step



Conclusion & Future work

➢ Related work

◼ KRCore1 : a shared connection pool 

◼ SECM2 : parallel connection setup

➢ UCM: The fist pure user-space RDMA connection management 
framework.

✓ Dramatically accelerated RDMA CM setup efficiency 

✓ Better observability for production operations

➢We hope UCM will inspire more new possibilities for optimizing the 
RDMA protocol stack at the software (user space) level.
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Dependency KRCore SECM UCM

User app ✓  ✓  

RDMA library ✓  ✓  ✓  

RNIC ✓  

[1] KRCORE: a microsecond-scale RDMA control plane for elastic computing. (ATC 2022)
[2] SECM: Securely and efficiently connections setup using RDMA-CM. Computer Networks 250 (2024)
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Q&A

Contact : shj@hnu.edu.cn
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