
UCM: Fast and Maintainable User-
space RDMA Connection Setup

Huijun Shen1, Jian Yang2, Zelong Yue2, Xingyu Guo1, Xijin Yin1, Lang An2, Yulin Chen2, Jie Ding2,

Hongyu Wu2, Yong Zhang2, Jianxi Ye2, Guo Chen1

1Hunan University 2ByteDance

RDMA is widely deployed

• RDMA in production-level applications:

• Cloud storage, Recommendation system, LLM inference/training…

2

• RDMA connection setup approaches

➢ Socket APIs : out-of-band connection

➢ CM* APIs : in-band connection

…

* The RDMA CM is a communication manager used to setup reliable, connected and unreliable datagram data transfers, and provides

standard APIs defined by librdmacm library. https://man7.org/linux/man-pages/man7/rdma_cm.7.html

RDMA is widely deployed

• RDMA in production-level applications:

• Cloud storage, Recommendation system, LLM inference/training…

3

• RDMA connection setup approaches

➢ Socket APIs : out-of-band connection

➢ CM* APIs : in-band connection

…

R
N

IC

R
N

IC

RDMA high-speed data trans

RDMA high-speed data trans

connection by socket APIs

connection by CM APIs

* The RDMA CM is a communication manager used to setup reliable, connected and unreliable datagram data transfers, and provides

standard APIs defined by librdmacm library. https://man7.org/linux/man-pages/man7/rdma_cm.7.html

RDMA is widely deployed

• RDMA in production-level applications:

• Cloud storage, Recommendation system, LLM inference/training…

4

• RDMA connection setup approaches

➢ Socket APIs : out-of-band connection

➢ CM* APIs : in-band connection

…

R
N

IC

R
N

IC

RDMA high-speed data trans

RDMA high-speed data trans

connection by socket APIs

connection by CM APIs

* The RDMA CM is a communication manager used to setup reliable, connected and unreliable datagram data transfers, and provides

standard APIs defined by librdmacm library. https://man7.org/linux/man-pages/man7/rdma_cm.7.html

RDMA fast path and slow path

5

➢ Slow control path:
Connection mgmt, etc.

➢ Fast data path: Data trans , Memory mgmt etc.

RDMA control path is slow

6

RDMA control path is slow

7

RDMA conn setup process is inefficient and difficult to monitor.

Problems of RDMA connection setup

◼ RDMA connection management (CM) is Inefficient.

2.124

4.546

7.74

500 1000 2000

La
te

n
cy

 (
m

s/
co

n
n

)

Conn number

8

1467.64us

3.52us

conn_mgmt data_trans

La
te

n
cy

 (
u

s)

send_data
connect
create_qp
resolve_route
resolve_addr
create_id

➢ High cost: 1-2ms/conn.

Overheads in one RDMA transmission Overheads in large-scale connections

➢ Bad scalability: Connection setup
efficiency further decreases as
scale increases.

Problems of RDMA connection setup

◼ Production Deployment Practices for RDMA Connections

9

APP

CM

APP

CM

Host A Host B

errno: 22

which QP?
which step/call?

which para?
no ideas

Try to reproduce

Capturing Guessing

Coding
(20k)

Lib bugs (1-2 months) :
version upgrade

Kernel bugs (0.5-1 year) :
push to Mellanox

Long resolution cyclesComplex bug diagnosisLimited log info

Goals

◼ Production Deployment Practices for RDMA Connections

10

APP

CM

APP

CM

Host A Host B

errno: 22

which QP?
which step/call?

which para?
no ideas

Try to reproduce

Capturing Guessing

Coding
(20k)

Lib bugs (1-2 months) :
version upgrade

Kernel bugs (0.5-1 year) :
push to Mellanox

Long resolution cyclesComplex bug diagnosisLimited log info

Our goal is to develop an new User-space
RDMA CM setup approach

From Kernel to User-space

11

➢ Original RDMA connection management in Linux kernel

From Kernel to User-space

12

➢ Original RDMA connection management in Linux kernel

Insights:

➢ Choosing CM conn

➢ unified APIs

➢ in-band path

➢ path detection

➢ Recent User-Space Tech

➢ DPDK

➢ LibOS

UCM: User-space RDMA Connection Management

13

➢ Our idea to bypass kernel for better performance

UCM overview

• UCM Framework

• Work module: setup and manage RDMA connections in user-space

• Monitor module: offer multi-method monitoring approaches for developers

14

UCM design --- UCM work module

• To support muti-thread, how to deal with thread communication?

15

• How to bypass kernel?

UCM design --- UCM work module

• How to bypass kernel?

• Conn Mgmt in LibOS

• on-loading packets processing

with DPDK

16

• To support muti-thread, how to deal with thread communication?

UCM design --- UCM work module

• To support muti-thread, UCM leverages multi-thread lock-free
management

• NIC features : Flow Steering, RSS hash

• Make sure that each connection's related information is accessed and managed
by only one thread 17

UCM design --- UCM monitor module

• Monitoring approaches

➢ User Statically-Defined Tracing (USDT)

• Add dynamic tracepoints to user-space applications

• Dynamic Monitoring with USDT

➢ Self-defined capturing tool

• Based on libpcap

18

Evaluation

• End-to-end Testbed

• Hardware: Mellanox ConnectX-6 Dx EN

• Software: cmtime, perftest, Mellanox OFED 5.8 driver,

• Comparisons: UCM, kCM (original RDMA), SECM

• Goals

➢ Compare UCM’s connection setup speed under different scenarios with the sota
approaches (single-threaded, multi-threaded, and extreme application)

➢ Evaluate the impact of UCM’s maintenance overheads on production applications

➢ Showcase successful maintenance experiences with UCM

19

Evaluation#1--- UCM work performance (RPC apps)

➢ Deploy UCM with an enterprise RPC framework in ByteDance
• UCM’s QPS (number of QPs per second) performs 3.3-5.1x that of kCM and

1.8-2.2x of SECM.

• The extra overhead introduced by enabling USDT is only 3.2%-7%.

0

4,000

8,000

12,000

3200 6400 8000 12032

Q
P

S

Number of QPs

kCM UCM UCMwithUSDT SECM

20

Evaluation#2--- UCM monitoring effort

➢ Monitoring for optimization
• latency of every operation in online connections

• performance after optimization

[2us,4us)

[1us,2us)

[2ms,3ms)
[16us,32us)

C
o

u
n

t
o

f
o

p
er

at
io

n
s

Latency

accept_hist

get_event_duration

set_event_duration

wait_for_accept

wait_time_hist

[512us, 1ms)

[4us, 8us)

C
o

u
n

t
o

f
o

p
er

at
io

n
s

Latency of the bottleneck_opt

before after

21

Latency Monitoring for Conn Setup Steps Latency Comparison for a Single Step

Conclusion & Future work

➢ Related work

◼ KRCore1 : a shared connection pool

◼ SECM2 : parallel connection setup

➢ UCM: The fist pure user-space RDMA connection management
framework.

✓ Dramatically accelerated RDMA CM setup efficiency

✓ Better observability for production operations

➢We hope UCM will inspire more new possibilities for optimizing the
RDMA protocol stack at the software (user space) level.

22

Dependency KRCore SECM UCM

User app ✓ ✓

RDMA library ✓ ✓ ✓

RNIC ✓

[1] KRCORE: a microsecond-scale RDMA control plane for elastic computing. (ATC 2022)
[2] SECM: Securely and efficiently connections setup using RDMA-CM. Computer Networks 250 (2024)

Thanks!
Q&A

Contact : shj@hnu.edu.cn

	Slide 1: UCM: Fast and Maintainable User-space RDMA Connection Setup
	Slide 2: RDMA is widely deployed
	Slide 3: RDMA is widely deployed
	Slide 4: RDMA is widely deployed
	Slide 5: RDMA fast path and slow path
	Slide 6: RDMA control path is slow
	Slide 7: RDMA control path is slow
	Slide 8: Problems of RDMA connection setup
	Slide 9: Problems of RDMA connection setup
	Slide 10: Goals
	Slide 11: From Kernel to User-space
	Slide 12: From Kernel to User-space
	Slide 13: UCM: User-space RDMA Connection Management
	Slide 14: UCM overview
	Slide 15: UCM design --- UCM work module
	Slide 16: UCM design --- UCM work module
	Slide 17: UCM design --- UCM work module
	Slide 18: UCM design --- UCM monitor module
	Slide 19: Evaluation
	Slide 20: Evaluation#1--- UCM work performance (RPC apps)
	Slide 21: Evaluation#2--- UCM monitoring effort
	Slide 22: Conclusion & Future work
	Slide 23: Thanks! Q&A Contact : shj@hnu.edu.cn

