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• TCP dominates ECS:
• 85%+ of workloads rely on it

• 60% of TCP services are tail-sensitive
• (e.g., Redis)

• Long tail latency 
• → SLA violation 

• → Revenue loss
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Why TCP’s Tail Latency Matters in the Cloud



Why TCP’s Tail Latency Gets Worse in Cloud

• Single-path transmission can overload paths
• Loss detection slow (RTO ~200ms, triple dup ACK)
• Congestion control reacts late (loss-driven)

Empirical: 1% loss → P99 latency increases 150×
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Why is TCP’s Tail Latency So Hard to Eliminate
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Cloud-scale:

O(1M) of links, 

O(100k) servers per 

region

Network Instabilities 
are common and 

inevitable



Root Causes: Network Instabilities

• Elephant flows: thousands of times/week
• NIC flapping: millions of times/day
• Network jitter: hundreds of times/day
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Result of Instability: Packet Loss

• Packet loss occurs at multiple points
• Type I: Packet loss in a single server

• Physical NIC
• Front-end (vNIC) and back-end (vSwitch)

• Type II: Packet loss in physical networks
• Physical Link
• Switch

• Type III: Packet loss in Middlebox 
• Gateway, Load balancer, NAT, …
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Result of instability: Packet Loss
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Physical NIC

Type I: Packet loss 

in a single server
vNIC front-end and vSwitch back-end 

Type III: Packet loss 
in Middlebox Cloud Gateway



Why Existing Solutions Fall Short
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Our Goal

Mitigating long tail latency 
in unstable,  large-scale 
cloud networks while 
maintaining complete 

transparency to end users

Limitations
Limited Performance Improvement 

Coarse-grained multipath[1] [2]

Lack of receiver-side reordering[3][4]
Random path selection[1][5]

Intrusiveness to Users
Dependency on ECN[6][7]

Kernel modifications at end hosts[1][8]

Poor Compatibility and Scalability
Custom switch functionalities[9][10]
Centralized control plane[11][12]



Bifrost

• RTT-Aware multipath transmission
• Hybrid hardware-software reordering
• ACK aggregation via delayed bitmap
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1. High performance guarantee

2. Non-intrusive to users

3. W/o requiring support from network devices



RTT-Aware Multipath Transmission
• Partition flow into equal-sized packet groups for scheduling
• Dynamically select the lowest RTT paths across groups

Src

DCN

Site A Site B Site C

DCN

Dst
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RTT 1

RTT 2

RTT 3
RTT 4

if RTT 4 < RTT 3 < RTT 2 < RTT 1
Choose Path 1 
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RTT-Aware Multipath Transmission
• Path sRckiness opRmizaRon

Src

DCN

Site A Site B Site C

DCN

Dst
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RTT 1

RTT 2

RTT 3
RTT 4

min(RTT 3,RTT 2,RTT 1 ) = RTT 1 
If RTT 4 - RTT 1  > 𝛿

Switch to Path 1



RTT-Aware Multipath Transmission
• Path stickiness optimization

Src

DCN

Site A Site B Site C

DCN

Dst
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RTT 1

min(RTT 3,RTT 2,RTT 1 ) = RTT 1 
If RTT 4 - RTT 1  > 𝛿

Switch to Path 1



Hybrid Hardware-Software Reordering
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• Hardware receives packets
• Software enforces reordering via metadata.



ACK Aggregation Via Delayed Bitmap

• Delayed ACK generaBon to capture vNIC losses
• ACK is sent only a+er packet reaches the VM, not at physical NIC recepIon

• ACK format follows bitmap ACK standard
• Sender triggers fast retrans. upon detecIng gaps in the bitmap

• ACK(3|0100) -> retrans. packet 3 

• Precise Retransmission Timeout (RTO)
• RTO is set to 4ms, roughly 2× RTT in data center networks

• Significantly faster than tradiIonal TCP RTO (200ms)
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Preliminary Evaluation
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Nginx Short Connection
Sockperf

Reduces tail latency by over 90%
under varying packet loss

Even under 1% packet loss, 
Bifrost sustains 97% of peak throughput 



Conclusion

• Cloud-scale network instability causes frequent tail latency spikes in 

TCP services, impacting SLA-critical applications like Redis. 

• We present Bifrost, a scalable and non-intrusive transport layer that 

combines RTT-aware multipath, hybrid reordering and delay ACK.

• Evaluation shows Bifrost reduces P99 latency by >90% and sustains 97% 

throughput under loss, significantly improving both transport and 

application performance.
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