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ABSTRACT
360-degree videos are becoming increasingly popular on com-
mercial platforms. In this position paper, we propose a holistic
research agenda aiming at improving the performance, re-
source utilization efficiency, and users’ quality of experience
(QoE) for 360° video streaming on commodity mobile de-
vices. Based on a Field-of-View (FoV) guided approach that
fetches only portions of a scene that users will see, our pro-
posed research includes the following: robust video rate adap-
tation with incremental chunk upgrading, big-data-assisted
head movement prediction and rate adaptation, novel support
for multipath streaming, and enhancements to live 360° video
broadcast. We also show preliminary results demonstrating
promising performance of our proof-of-concept 360° video
streaming system on which our proposed research are being
prototyped, integrated, and evaluated.

1 INTRODUCTION
The predominance of video streaming in today’s Internet
shows no sign of weakening. In Q4 2016, mobile videos
have eventually surpassed desktop videos in terms of online
viewing time [4]. Today’s mobile videos are escalating in
many dimensions including resolution, frame rate, codec, and
in particular, the interaction method (e.g., 360° video and
drone-assisted video). Such changes are fueled by multiple
factors including faster mobile networks (LTE and 5G), new
video types, more powerful devices, and affordable gears such
as Virtual Reality (VR) headsets.

In this position paper, we explore several research direc-
tions for streaming 360° videos, also known as immersive or
panoramic videos. 360° videos are expected to become “the
next frontier in mobile video” [8]. As a critical component
of VR, they provide users with an immersive viewing expe-
rience that far exceeds what regular videos can offer. They
are becoming increasingly popular on commercial platforms
such as YouTube with the top videos being viewed more than
60 million times.

Maintaining good Quality of Experience (QoE) for 360°
videos over bandwidth-limited links on commodity mobile

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACM must be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
HotNets-XVI, November 30-December 1, 2017, Palo Alto, CA, USA
© 2017 Association for Computing Machinery.
ACM ISBN 978-1-4503-5569-8/17/11. . . $15.00
https://doi.org/10.1145/3152434.3152443

devices remains challenging. First, 360° videos are large: un-
der the same perceived quality, 360° videos have around 5x
larger sizes than conventional videos. Second, 360° videos
are complex: sophisticated projection and content represen-
tation schemes may incur high overhead. For example, the
projection algorithm used by Oculus 360 requires servers to
maintain up to 88 versions of the same video [46] (see §2).
Third, 360° videos are still under-explored: there is a lack of
real-world experimental studies of key aspects such as rate
adaptation, QoE metrics, and cross-layer interactions (e.g.,
with TCP and web protocols such as HTTP/2).

The contribution of this paper is a research agenda con-
sisting of several novel ideas that we envision will become
building blocks of next-generation 360° video systems:
∙ We employ a Field-of-View (FoV) guided approach that
fetches only portions of a scene users will see. We pinpoint
a fundamental mismatch between today’s popular encod-
ing schemes (e.g., H.264/AVC and H.265/HEVC) and FoV-
guided 360° streaming: these schemes lack the capability of
incrementally upgrading a fetched portion to a higher quality.
We thus propose a rate adaptation scheme with a “delta encod-
ing” design that can substantially improve the adaptiveness in
face of FoV prediction errors (§3.1).
∙ We use big data analytics to facilitate accurate head move-
ment prediction (HMP), a key prerequisite for FoV-guided
streaming. Specifically, we propose to jointly consider several
dimensions including (1) viewing statistics of the same video
across users, (2) viewing behaviors over multiple videos of a
single user, and (3) other contextual information such as users’
poses and engagement levels. Such a “data fusion” approach
provides key intelligence for FoV-guided prefetching (§3.2).
∙ We propose enhancements that allow 360° videos to be
efficiently streamed over multiple network paths such as WiFi
and cellular. The basic idea is to leverage the spatial and
temporal priorities of 360° video chunks to strategically as-
sign each chunk to an appropriate network path. Compared
to application-agnostic approaches such as MultiPath TCP
(MPTCP) [5], our content-aware multipath scheme brings
better performance and more flexibility (§3.3).
∙ We propose ideas for improving the performance of live
360° videos, such as broadcaster-side optimizations and re-
altime crowd-sourcing for HMP prediction. These ideas are
motivated by a preliminary characterization study of today’s
commercial live 360° video broadcast platforms: Facebook,
YouTube, and Periscope (§3.4).

We are currently working on realizing the above ideas
and integrating them into a holistic 360° streaming system on
commercial off-the-shelf (COTS) mobile devices with various
system-level optimizations as sketched in §3.5. We describe
related work in §2 and conclude the paper in §4.
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Figure 1: Watching 360-degree videos.

2 BACKGROUND AND RELATED WORK
Background. 360° videos are recorded by omnidirectional
cameras which capture all 360 degrees of a scene that can be
“wrapped” onto a 3D sphere. There are COTS portable omni-
directional cameras that are either standalone (e.g., Acer Holo
360° with built-in LTE [2]) or attachable to a smartphone (e.g.,
Insta360 [3]). Users can watch 360° videos directly on com-
modity smartphones or through affordable VR devices such
as a Google Cardboard [1]. When watching a 360° video, a
viewer at the center of the sphere can freely control her view-
ing direction by changing the pitch, yaw, and roll as shown in
Figure 1. During a playback, in addition to performing regular
video decoding, the player also needs to apply projection to
render the content in the user’s current FoV based on her head
orientation. There are different projection algorithms such as
equirectangular projection [11] used by YouTube and Cube
Map [10] employed by Facebook. The width and height of
the FoV are usually fixed parameters of a VR headset.

Related Work. Today’s major 360° video providers (e.g.,
YouTube and Facebook) employ FoV-agnostic streaming that
always delivers the entire panoramic view, leading to tremen-
dous bandwidth waste [16, 37]. To play HD 360° videos
smoothly over networks with limited bandwidth, we can em-
ploy FoV-guided streaming that focuses on providing high-
quality views within users’ FoV. Below, we describe two main
FoV-guided approaches: tiling and versioning.

Tiling. The 360° video is spatially segmented into tiles. Only
tiles within the FoV are downloaded at high quality, whereas
the remaining tiles are delivered at lower qualities or not de-
livered at all [16, 23, 24, 27, 37]. Prior studies demonstrated
via trace-driven simulations that tiling provides significant
bandwidth saving (typically 45% [16] and 60% to 80% [37])
compared to the FoV-agnostic approach. Tiling imposes mini-
mal load at the server while increasing the load at the client,
which needs to determine the set of tiles to fetch and then
“stitch” them together. We show in §3.5 that it is feasible to
realize this approach on COTS smartphones.

Versioning. The 360° video is encoded into multiple versions
each having a different high-quality region; the player needs
to pick the appropriate version based on user’s viewing di-
rection [18, 46]. This approach simplifies the fetching, de-
coding, and rendering logic at the client’s player, but incurs
substantial overhead at the server that needs to maintain a
large number of versions of the same video (e.g., up to 88 for
Oculus 360 [46]).

In the multimedia community, a plethora of work focused
on panoramic video generation from either a single camera or
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Figure 2: Server-side content organization in Sperke.

multiple cameras [21, 41, 43]. Researchers also proposed dif-
ferent projection and encoding schemes [6, 10, 27, 32, 33, 39].
Some other studies investigated other aspects such as mea-
surement [13, 46], energy consumption [30], and optimization
through edge computation [34]. It is worth mentioning that
the vast majority of recent mobile 360° video research [16–
20, 27, 30, 37, 45] is based on simulation or trace-driven
emulation. To the best of our knowledge, only [24] used
a proprietary system implementation that is in early-stage,
e.g., lacking key components such as rate adaptation and
head movement prediction. This is in sharp contrast with con-
ventional video streaming research where many mature and
open-source players and tools are available.

3 THE RESEARCH AGENDA
We have recently started developing Sperke, a FoV-guided
adaptive mobile 360° video streaming framework. Sperke
employs a tiling-based approach to avoid storing too many
video versions at the server side. Sperke has three goals: (1)
smooth playback based on robust head movement predic-
tion (HMP), (2) interchangeable projection, rate adaptation,
and HMP algorithms as the ones we propose in this paper,
and (3) compatibility with COTS devices. As shown in Fig-
ure 2, Sperke follows the DASH [38] paradigm and encodes
a panoramic video into multiple qualities; each quality is spa-
tially segmented into multiple tiles, which are then temporally
split into chunks. A chunk 𝐶(𝑞, 𝑙, 𝑡) is thus the smallest down-
loadable unit in Sperke where 𝑞, 𝑙, and 𝑡 are the quality level,
tile ID, and chunk starting time, respectively. All chunks have
the same duration (e.g., one or two seconds), and are fetched
by the client’s player based on estimated network conditions
and HMP. Chunks are then decoded, projected, and rendered
according to user’s current FoV (details in §3.5).

We will use Sperke as an “infrastructural base” upon which
our proposed research will be prototyped and evaluated. We
next describe our research agenda that adds several salient fea-
tures and optimizations to the Sperke framework to improve
its performance, resource efficiency, and usability.

3.1 Video Rate Adaptation with Incremental
Chunk Upgrades

3.1.1 Incremental Chunk Upgrading Support. To-
day’s 360° and non-360° videos share the same set of en-
coding schemes such as H.264/AVC, H.265/HEVC, VP9, etc.
We make a key observation that there is a fundamental mis-
match between them and FoV-guided streaming due to HMP’s
imperfection. To see the reason, assume that the HMP algo-
rithm predicts that the user will look at FoV 𝑋 . Due to the
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Figure 3: AVC vs. SVC encoding.

inherent human “randomness”, the user oftentimes ends up
looking at FoV 𝑋 ′ ̸= 𝑋 . Prior studies indicate that such pre-
diction errors |𝑋−𝑋 ′| are usually small and can be corrected
over time [16, 37]. To tolerate them, the player needs to fetch
more tiles surrounding the predicted FoV area 𝑋 . Such tiles
are called “out-of-sight (OOS)” tiles [37] because they will
not be visible if the HMP is perfect. To save bandwidth, OOS
tiles are downloaded in lower qualities. For example, the fur-
ther away they are from 𝑋 , the lower their qualities will be.
As a result, some chunks in 𝑋 ′ will be displayed at lower
qualities unless they are discarded and replaced by higher-
quality chunks, as shown on the left side of Figure 3. Ideally,
we would need an incremental chunk upgrade mechanism: if
the HMP discovers some downloaded OOS chunks will be
displayed, the player can upgrade them to higher qualities by
only downloading the delta.

Such incremental chunk upgrades can be realized by Scal-
able Video Encoding (SVC), which was standardized as an
H.264 extension [12], and will also be available in H.265 [40].
The basic idea of SVC is to encode a chunk into ordered
layers: one base layer (Layer 0) with the lowest playable
quality, and multiple enhancement layers (Layer 𝑖 >0) that
further improve the chunk quality based on layer (𝑖 − 1).
When playing a chunk at layer 𝑖 > 0, the player must have all
its layers from 0 to 𝑖, as shown on the right side of Figure 3.
As of today, SVC has registered little commercial deployment
likely due to its complexity and a lack of use cases [31]. But
we envision that SVC will find its unique application in 360°
video streaming and VR.

We are unaware of any prior effort that applies SVC to 360°
videos or VR. The closest approach to this idea is a two-layer
encoding scheme proposed in [19]. Our approach is different
though since we allow multiple layers and make multi-layer
incremental chunk upgrade a fundamental building block for
tiling-based 360° video streaming.

We plan to add SVC support to Sperke and evaluate its
effectiveness. A practical issue is that despite the availability
of open-source SVC codecs, today’s mainstream smartphones
do not have built-in hardware SVC decoders. We thus plan
to adopt a cloudlet-based offloading approach in our study:
use a local cloudlet [25] to perform runtime transcoding from
SVC to AVC, which can then be decoded by mobile GPU.

3.1.2 Video Rate Adaptation (VRA) Algorithm. Now
let us consider Video Rate Adaptation (VRA), whose goal is

to determine the quality level of each chunk to be fetched so
to maximize the user QoE [14] (fewer stalls/skips1, higher
bitrate, and fewer quality changes). Designing a VRA algo-
rithm for tiling-based 360° videos is challenging, because
the algorithm needs to make judicious decisions at not only
the quality domain (which quality level to fetch) but also at
the spatial domain (which tiles to fetch) based on multiple
input sources including network bandwidth estimation and
HMP, both possibly inaccurate. To address this challenge,
we decompose our design into three parts with increasing
complexity as to be detailed next.

In the first part, let us assume that the HMP is perfect.
Then the FoV-guided 360° VRA essentially falls back to
regular (non-360°) VRA. This is because we can generate
a sequence of super chunks where each super chunk con-
sists of the minimum number of chunks that fully cover
the corresponding FoV which we precisely know. We can
then apply a regular VRA to the super chunks. A constraint
that reduces the complexity is that all chunks within a super
chunk will have the same quality (otherwise different subar-
eas in a FoV will have different qualities, thus worsening the
QoE). The challenge here is the VRA algorithm design, which
can be possibly done by customizing an existing VRA algo-
rithm. There exists a large body of VRA for regular videos
such as throughput-based [29], buffer-based [28], and control-
theoretic approaches [44]. However some of them may poorly
interact with FoV-guided 360° video streaming. For example,
buffer-based VRA (e.g., BBA [28]) may not be a good can-
didate because the HMP prediction window is usually short
(§3.2) and may thus limit the video buffer occupancy.

In the second part, we handle inaccurate HMP by strategi-
cally adding OOS chunks to each super chunk. The number
of OOS chunks and their qualities depend on three factors.
First, the bandwidth constraint that can either be the physi-
cal bandwidth limit or the bandwidth budget configured by
the user. Second, the HMP accuracy; ideally, the lower the
accuracy is, the more OOS chunks at higher qualities are
needed due to the increased randomness; in the worst case
when the head movement is completely random, OOS chunks
may spread to the entire panoramic scene. Third, data-driven
optimizations to further intelligently modify the OOS tiles
(details in §3.2). We will develop an OOS chunk selection
algorithm that considers the above factors and balances their
incurred tradeoffs.

In the third part, we consider incremental chunk upgrades
(§3.1.1). At runtime, the VRA algorithm continuously updates
the chunk scheduling based on the bandwidth prediction and
HMP. An updated scheduling may trigger chunks’ incremen-
tal update (i.e., fetching enhancement layers). Two decisions
need to be carefully made: (1) upgrade or not: upgrading
improves the quality while not upgrading saves bandwidth for
fetching future chunks; (2) when to upgrade: upgrading too

1For realtime (live) streaming, chunks not received by their deadlines are
skipped. For non-realtime streaming, if a chunk cannot be fetched by its
deadline, typically a stall (rebuffering) will occur.



early may lead to extra bandwidth waste since the HMP may
possibly change again in the near future, while upgrading too
late may miss the playback deadline.

We will integrate the above three parts into a holistic 360°
VRA algorithm. Note that our proposed scheme can be further
extended to support a hybrid SVC/AVC scheme: the server
prepares both the SVC and AVC versions of a 360° video;
for chunks whose qualities are not likely to upgrade, we can
directly fetch their AVC versions to avoid the (reasonable yet
not negligible) performance/bandwidth overhead of SVC.

3.2 Big Data Analytics for HMP and VRA
As a critical component of FoV-guided video streaming, HMP
improves the user experience by allowing the player to prefetch
chunks that the user is about to see. Previous studies involving
small-scale user trials [16, 37] indicate that for many videos,
HMP at a short time scale (e.g., hundreds of milliseconds
to up to two seconds) with a reasonable accuracy can be
achieved by learning past head movement readings. This re-
search task instead goes beyond existing in-lab, short-time,
small-scale, single-feature studies by investigating how mo-
bile users interact with 360° videos “in the wild”. We plan
to take a long-term, crowd-sourced, multi-feature study at
Internet scale, with the goal of facilitating HMP and rate
adaptation by learning from big data. Specifically, we will
develop a 360° video player app and publish it to mobile app
stores such as Google Play. Under users’ consent, the app will
collect a wide range of information such as (1) the video URL,
(2) users’ head movement during 360° video playback, (3)
user’s rating of the video, (4) lightweight contextual informa-
tion such as indoor/outdoor, watching mode (bare smartphone
vs. headset), mobility (stationary vs. mobile), pose (sitting,
standing, lying etc.). Since we do not host the actual video
content and only collect light information (uncompressed
head movement data at 50 Hz is less than 5 Kbps), our system
can easily scale. To give users incentives, the app will contain
some attractive features such as recommending popular 360°
videos from multiple sources. The IRB application of this
study is currently in progress.

We will then analyze such “big data” and use it to either
directly improve HMP or help VRA (§3.1.2). Specifically, we
want to answer three research questions.

First, how to leverage multiple users’ viewing statistics of
the same video to guide chunk fetching. Intuitively, we can
give “popular” chunks (viewed by most users) higher priori-
ties when prefetching them, thus making long-term prediction
feasible. Theoretically, when being integrated with VRA, this
can be formulated as a stochastic optimization problem: using
chunks’ viewing probabilities to optimally find the chunks
to download (as well as their qualities) such that the QoE is
maximized.

Second, how to mine the same user’s viewing behaviors
in the long run over multiple videos to customize the tile
fetching strategy for that particular user. For example, a user’s
head movement speed can be learned to bound the latency

Priority Spatial Temporal
High FoV chunks urgent chunks
Low OOS chunks regular chunks

Table 1: Spatial & temporal priorities in 360° videos.

requirement for fetching a distant tile (e.g., elderly people
tend to move their heads slower than teenagers).

Third, how to utilize the contextual information to further
facilitate HMP. For example, when the user is lying on a couch
or bed, it is quite difficult for her to view a direction that is
180° behind. In another example, we can leverage eye gaze
tracking to analyze the user’s engagement level [15], which
possibly indicates the likelihood of sharp hard movement (this
will be studied in a lab setting).

Finally, the above features will be jointly exploited and
integrated with the HMP and VRA schemes. For example, we
can use the crowd-sourced data to add OOS chunks, and use
the user’s head movement speed bound and the contextual
information to prune OOS chunks.

3.3 Multipath Streaming Support
Multiple network interfaces (e.g., WiFi and LTE) are widely
supported by today’s mobile devices. Multipath transport al-
lows applications to use multiple interfaces simultaneously.
It provides new opportunities for drastically improving the
mobile app performance, including video streaming [26].
The state-of-the-art multipath solution is MPTCP [5]. It uses
a content-agnostic multipath model: the upper-layer video
server application regards all available paths as a single logi-
cal path, while the multipath scheduler transparently splits the
video bitstream over the actual paths. Such a paradigm is sim-
ple and general. Also it largely makes sense for a conventional
non-360° video that consists of only a single stream.

Although vanilla MPTCP can be directly applied to 360°
video streaming, we identify opportunities for further im-
provement. Our key observation is that tiling-based 360°
videos can be naturally broken down into “substreams”, each
with different priorities. We identify two types of priorities
listed in Table 1. For spatial priority, FoV chunks are more
important than OOS chunks (§3.1.1); for temporal priority,
“urgent chunks” are chunks that have a very short playback
deadline due to, for example, a correction of a previous inaccu-
rate HMP. To avoid imminent stalls, they should be assigned
a higher priority than regular (non-urgent) chunks.

Motivated by the above, we propose to go beyond the “bit-
stream splitting” model of MPTCP by strategically using
application knowledge to guide multipath decisions, in order
to achieve better video QoE. We plan to leverage spatial and
temporal priorities in the context of 360° video streaming.
Consider the spatial priority as an example. Assume there
are two paths with different qualities (loss rate, latency, etc.).
One possible approach is to prioritize FoV and OOS chunks
over the high-quality and low-quality paths, respectively, and
to deliver them in different transport-layer QoS (reliable vs.
best-effort respectively). Doing so offers application-layer
benefits in that it facilitates faster delivery of FoV chunks



by sacrificing the quality/performance of OOS chunks – a
desirable tradeoff in many cases. Multipath also provides
transport-layer benefits: since all paths are now fully decou-
pled, issues such as cross-path out-of-order will be eliminated,
leading to significant performance improvement [36].

Besides developing multipath strategies for 360° videos on
which no prior effort exists, we also plan to apply the general
concept of application-assisted multipath optimization, a phi-
losophy differing from MPTCP’s content-agnostic principle,
to other multimedia applications. We will also explore how
other transport-layer primitives such as network coding [22]
can be leveraged in this context.

3.4 Improving Live 360° Video Broadcast
So far our discussions focused on on-demand 360° videos. We
now consider live 360° video broadcast, where a broadcaster
device uploads the recorded panoramic live video to a server
which then disseminates it to multiple viewers.

3.4.1 Pilot Characterization Study. Fueled by today’s
high-speed access networks and affordable panoramic cam-
eras, live 360° video broadcast started to gain popularity on
commercial platforms. Since we are unaware of any prior
study, we conduct in-lab measurements of live 360° videos on
three popular platforms: Facebook, YouTube, and Periscope.
The goal of our measurements is to understand various prop-
erties of live 360° video broadcast, such as the protocol us-
age, rate adaptation, and performance. In our experimental
testbed, we use an Insta360 panoramic camera [3] attached
to a Google Nexus 5X smartphone to broadcast 360° videos.
The receivers consist of several laptops where viewers watch
the video lively, for example, on the broadcaster’s Facebook
timeline. By default both the broadcaster and the viewers
use high-speed WiFi networks. We leveraged several tools
including tcpdump, mitmproxy [9] (for HTTPS inspection),
and tc (for emulating poor network conditions).

Protocols. 360° and non-360° live video [35] broadcast
share a similar architecture: a server disseminates the live
content uploaded by the broadcaster to all viewers. For 360°
live broadcast on the three platforms, we find that the up-
load path (from the broadcaster to the server) uses RTMP
(Real-Time Messaging Protocol), a proprietary live stream-
ing protocol over TCP2. The download path (from the server
to viewers) employs either regular pull-based HTTP DASH
(Facebook and YouTube) or push-based RTMP (Periscope).

FoV-guided Streaming. We find that neither Facebook
nor YouTube employs FoV-guided streaming. Henceforth the
broadcaster has always to upload full panoramic views, which
are then entirely delivered to the viewers, possibly in lower
qualities due to rate adaptation (see below). As a result, under
the same perceived quality, 360° live videos are about 4 to 5
times larger than non-360° live videos. Periscope likely does
not use FoV-guided streaming either, but we are not able to
confirm that because its RTMP traffic is encrypted.

2RTMP was developed by Adobe, which has released an incomplete protocol
specification for public use [7].

Upload Download End-to-End Latency (second)
BW BW Facebook Periscope YouTube

No limit No limit 9.2 12.4 22.2
2Mbps No limit 11 22.3 22.3

No limit 2Mbps 9.3 20 22.2
0.5Mbps No limit 22.2 53.4 31.5
No limit 0.5Mbps 45.4 61.8 38.6

Table 2: E2E latency under different network conditions.

Rate Adaptation. Regardless of the video platform, our
experiments show that no rate adaptation is currently used
during a live 360° video upload. Instead, video quality is
either fixed or manually specified by the broadcaster.

With respect to download, Facebook and YouTube employ
DASH-style rate adaptation. Specifically, the viewer periodi-
cally requests for a Media Presentation Description (MPD)
file that contains the meta data (e.g., URL, quality, codec info)
for recently generated video chunks that are (re)encoded by
the server into multiple quality levels (720p/1080p for Face-
book and six levels from 144p to 1080p for YouTube). The
viewer will then select an appropriate quality level for each
chunk and fetch it over HTTPS.

End-to-End (E2E) Latency. We call E2E latency the elapsed
time between when a real-world scene appears and its viewer-
side playback time. This latency consists of delays incurred at
various components including network transmission, video en-
coding, and buffering at the three entities (broadcaster, server,
and viewer). E2E latency is a key QoE metric for live video
streaming [42], which we measure as follows. The broad-
caster points its camera to a digital clock that displays time
𝑇1; moments later when this scene is seen by the viewer, the
clock displays time 𝑇2. We use a separate camera to simulta-
neously record 𝑇1 (on the viewer’s screen) and 𝑇2 to compute
the E2E latency as 𝑇2 − 𝑇1.

Table 2 shows a summary of the E2E latency measured for
Facebook, Periscope, and YouTube under different network
conditions. Each value in the table is the average E2E latency
computed across 3 experiments (stddev/mean ranges from 1%
to 17%); the camera recording quality is fixed at 1080p. We
make two observations. First, the “base” latency when the
network bandwidth is not limited is non-trivial. Second, as the
network condition worsens, we observe degraded video qual-
ity exhibiting stall and frame skips (not shown in Table 2) as
well as inflated E2E latency, particularly when the bandwidth
is reduced to 0.5Mbps.

3.4.2 Improving the state-of-the-art. Despite being
preliminary, our measurements indicate that live 360° video
broadcast can be improved in various aspects. We next de-
scribe two directions we plan to pursue.

First, we will design a VRA scheme for live 360° video up-
load using lessons learned from non-live 360° VRA (§3.1.2).
Here a novel design aspect is that, when the network quality
at the broadcaster side degrades, instead of stalling/skipping
frames or decreasing the quality of the panoramic view, the
broadcaster can have an additional option of what we call
spatial fall-back that adaptively reduces the overall “horizon”
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being uploaded (e.g., from 360° to 180°) in order to reduce
the bandwidth consumption. The intuition is that for many
live broadcasting events such as sports, performance, cere-
mony, etc., the “horizon of interest” is oftentimes narrower
than full 360°. Therefore reducing the uploaded horizon may
bring better user experience compared to blindly reducing
the quality. The challenge here is to solve the open problem
of determining the (reduced) horizon’s center and the lower
bound of its span (e.g., ideally it should be “wider” than the
concert’s stage). We envision that this can be achieved by com-
bining several approaches including manual hints from the
broadcaster, crowd-sourced HMP prediction (see below), and
real-time video content analysis (offloadable to the cloud).

The second research direction is crowd-sourced HMP pre-
diction for live 360° videos at the viewer side. Due to its
realtime nature, this task is more challenging than the HMP
prediction for non-live 360° videos. Our basic idea is to lever-
age the fact that different viewers experience different viewing
latency (§3.4.1): when many viewers are present, due to the
heterogeneity of their network quality which, together with
other factors, dictates the buffering level, the E2E latency
across users will likely exhibit high variance as exemplified in
Table 2 (this has also been observed in non-360° live stream-
ing measurements [42]). We can therefore use the realtime
head movement statistics of low-latency users (whose network
qualities are typically good) to help HMP for high-latency
users who experience challenging network conditions and
thus can benefit from FoV-guided streaming.

We will conduct research on both directions above and inte-
grate our solutions with the Sperke framework. It is also worth
mentioning that 360° live broadcast can also benefit from our
previously introduced primitives such as incremental chunk
upgrading (§3.1.1) and application-assisted multipath (§3.3).
For example, if the broadcaster employs SVC encoding, then
there is no need for the server to perform re-encoding because
the client player can directly assemble individual layers into
chunks with different qualities.

3.5 System-level Integration & Optimization
We plan to integrate the components described from §3.1
to §3.4 into Sperke, making it a unified streaming platform
for both non-live and live 360° videos. This faces numerous
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Figure 5: Preliminary performance of the Sperke player.
system challenges, the most critical one being dealing with
the limited computation and energy resources on the client
side (mobile device) where most Sperke’s logic resides.

Figure 4 sketches the high-level system architecture we
envisage for the client-side Sperke logic. We highlight two
system-level optimizations. First, Sperke effectively utilizes
multiple hardware decoders on mobile devices (e.g., 8 H.264
decoders for Samsung Galaxy S5 and 16 for Samsung Galaxy
S7) in parallel to improve the performance. We plan to de-
sign a decoding scheduler that assigns encoded chunks to
decoders based on their playback time and HMP. Second,
we introduce a decoded chunk cache (implemented using
OpenGL ES Framebuffer Objects) that stores uncompressed
video chunks in the video memory. Doing so allows decoders
to work asynchronously, leading to a higher frame rate. More
importantly, when a previous HMP is inaccurate, the cache al-
lows a FoV to be quickly shifted by only changing the “delta”
tiles without re-decoding the entire FoV.

Our preliminary measurements indicate that the above op-
timizations are highly effective by engineering the low-level
streaming pipeline and judiciously manipulating raw video
data. As shown in Figure 5, on SGS 7, using a 2K video, 2x4
tiles, and 8 parallel H.264 decoders, the FPS increases from
11 (before optimization) to 53 (after optimization); rendering
tiles only in FoV further boosts the FPS to 120. Our approach
also significantly outperforms the built-in “tiles” mechanism
introduced in the latest H.265 codec [40], which is not de-
signed specifically for 360° videos. Overall, our preliminary
system and its measurement results demonstrate the feasibil-
ity of building a tiling-based FoV-guided streaming scheme
on COTS smartphones using conventional decoders.

4 CONCLUDING REMARKS
Our proposed research optimizes 360° video streaming us-
ing interdisciplinary approaches: we creatively apply existing
techniques developed from the video coding community in
new contexts (§3.1); we use big data and crowd-sourcing
to add intelligence to streaming algorithms (§3.2); we uti-
lize cross-layer knowledge to facilitate content distribution
over multiple networks (§3.3); we provide new insights in
optimizing live 360° video streaming from both broadcaster
and viewer sides (§3.4). Finally we will integrate our innova-
tions into Sperke, a holistic system with various system-level
optimizations (§3.5).
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